一年级数学第一册安排了两次“探索规律”,我将两次的内容进行了整合,设计了探索实物、图形和数的排列规律。这节课从始至终都充满浓浓的探究味,在入学第一学期就为培养学生探究能力的发展奠定了坚实的基础。
一、在探究中体验“规律”的存在和优势
上课开始,我创设了一个让学生在短时间记数的情境。出了三组数,一组是没有规律的数。有两组是有规律的数,分别是1234512345和22112211;学生在短短的几秒内就记住了这些数。我究其记得快的原因,学生说因为这两组数有规律,所以记得快。这个活动的设计,目的是让学生在探究中体验“规律”的存在和优势所在,进而明确这节课探究的目标是探索规律。
二、让学生经历从具体到抽象的探究过程
本节课学生经历了从具体到抽象的探究过程:从找实物的排列规律,到找图形的排列规律,再到找10以内数的排列规律。找实物的排列规律是从学生熟悉的水果朋友和动物朋友入手,让学生发现规律并且应用规律解决简单的问题。到图形排列规律时,放手让学生用4个圆片和4个三角形自己创造规律。接下来转入数的排列规律。因为学生只学习了10以内的数,所以我把探索数的规律定位在发现单数、双数的排列规律上,让学生发现单、双数的排列规律都是一个比一个多2。最后,回归到生活中的规律。这种从具体到抽象的设计,既符合学生的认知水平,又符合学生的思维特点。为学生探究能力的发展搭建了逐步提升的平台。
三、采用多种形式为学生探究学习提供空间
学习是一个过程,探究学习更应是一个充满着观察、发现、实践、推断的过程。因此,教师应为学生的探究活动提供充分的时间和空间。教学中,我注重为学生创设一个活动、探究、创造的学习氛围,采用多种形式让进行学生探究学习,使学生在摆一摆、涂一涂、猜一猜等活动中发现规律、发展思维。比如:课上让学生动手摆图形创造规律,还有用彩笔在一排没有颜色的花上,创造出一排颜色上有规律的花。学生们在一种愉快的氛围中,创造出很多规律,学生将对“规律”的理解用自己的双手表现出来。
整节课,我鼓励学生自己去发现、自己去尝试、自己去创造,力求在生动有趣的情境中,使学生探索一个又一个规律,在玩中学,享受着探究的无限乐趣。
在本节课的教学中,我首先激发学生情趣导入新课,学生非常投入。我利用探究法、观察法、归纳法,通过引导学生观察,探究,归纳学习内容。在教师的引导、组织下,学生通过独立思考、小组讨论、共同探究,揭示数与数之间的变化规律,图形的排列规律,并将知识应用于生活实践。在合作学习的过程中,小组成员生生互动,互相交流,互相启发,互相帮助,达到共同提高的目的。学生自如地在有趣的、富有挑战性的活动中获取知识,提高解决问题的能力,培养创新精神。
怎样找规律呢?也许,我们更多地关注找怎样的规律,其实,我们更需要在“找”上做文章。找规律的教学价值与重点是在“找”的过程中。课前导学的问题正体现了这一点。例1设计的问题,是用探索有多少个不同的和的问题,引入可以框住多少个相邻两个自然数,在问题的引导下,学生能自主的小组探索,教学目标能提前完成。而对于规律的发现学生还是逐个平移红色的方框,我又提出:是否有更简捷的方式找到一共有多少种拿法呢?我的意图是:红色的方框不再逐个向右平移,而是一下子从最左端平移至最右端,通过找框内第一个数,找到一共有多少种拿法。而且,这样也为学生后面的算式算出有多少种拿法提供解释算理的形象支撑。探索规律”的过程是学生利用已有的知识和生活经验进行创造性学习的过程。在这个过程中充满了许多富有情趣的细节,有助于帮助学生锻炼克服困难的意志。
在教学《用计算器探索规律》一课时,学生的积极性极高,可能是他们可以乘机玩一玩他们认为非常神奇有趣的计算器吧!虽然这一现象使课堂看着充满激情,但在这激情的背后却让我陷入了几点思考之中。
1、计算器要“利用”到何种程度为宜。我们借助计算器,将学生的思维从繁杂的计算中解脱出来,使学生更加关注规律的发现过程。在猜想、枚举验证、应用规律的过程中,学生必然要经历大量的计算,其中也包括一些大数目的计算。为了使学生摆脱这些繁杂的计算,让学生的思维集中于探索和发现规律上,教材也明确要求学生使用计算器来进行这些计算。这样就可以让学生更好地体验探索数学规律的过程与方法,并使教学过程更多地侧重于发展学生的数学思考。这是计算器的作用所在。但同学我们也要清醒地认识到,计算器是用来帮助学生能较快较准地计算出大数目计算题的结果,在此基础上发现各种规律。所以我认为计算器只是本节课的一种辅助工具,而非本课所学规律的重点。我们不要把计算器神奇化,使得学生过分相信、依赖于计算器计算,这样只有害处且无益于学生数学思维的发展,数感的培养。
2、本课内容似乎略显单薄,时间尚余。本课是教学一个因数不变,另一个因数乘几,积也相应地发生变化的规律。但是通过实践教学,我发现这个内容在一节课内进行教学和相应的应用练习,时间还有多余,学生也似乎还能学习的`余力。对此,教师可以有多种处理方式,比如增加练习,进而巩固知识;又如适当地补充学习内容:
(1)一个因数不变,另一个因数除以几时积的变化;
(2)两个因数都有变化时积的相应变化等等。如果是从拓展学生的数学思维,培养学生的数学能力方面考虑,我则偏向选择第二种处理方法。当然,这是对学有余力的同学而言。对于其他学生则可在今后的学习和练习中慢慢巩固。我觉得这样做不但有利于学生的发展和提高,还能有效地避免学生产生思维定势。
《探索图形的规律》一课的教学目标是引导学生发现一些简单图形摆放的规律,通过探究图形的规律,培养学生发现规律,总结归纳规律的能力。在这节课的教学中,我采用的是引导发现的教学方法,抛出问题后,让学生自己观察、自己思考、自己得出答案,如果有问题教师予以指导。本节课的教学达到了预期的效果,但是仍有些不足。现总结本节课教学的优缺点如下:
一、优点:
1、本节课的设计合理,思路清晰,问题设置由浅入深。由摆n个三角形、正方形、五边形需要多少根小木棒总结出n个n边形需要小木棒的根数,这是这节课的亮点。
2、在这节课的教学中,我始终遵循以学生为主体,教师的作用是引导,不是一味的讲。
3、在这节课的教学中我始终注意培养学生的观察能力、审题能力和语言表达能力。
4、对于学生的观点,让学生自行质疑提问,学生面向学生,更调动了学生的学习主动性。
二、缺点:
1、教师的引导语言还不够精炼,以至于个别的问题没有启发出学生的思维。
2、课堂语言不够严肃,出现了几句和课堂无关的话。
3、有两处没有耐心的等学生思考出答案就进行了提示,没有锻炼好学生的思考力。
4、小组讨论时间有些不足,并不是所有的学生都探究出了答案。
5、课堂预设不够丰富,在学生提出独特的想法的时候,教师的应变有点慢。
6、还应该提高教师的应变能力。
课堂教学是一门缺憾的艺术,每一节课都会有些许的遗憾,但是每一节公开课对于我来说都是一次提升,虽然仍有很多的不足,但是我在众多教师观摩的情况下仍然展示出了这节课教学的优点,说明我还是进步的。我不能因为这节课的教学中出现了些许的不足而丧志信心,更不能因为拥有了这些优点而骄傲自满。以后教学工作中的每一节课都是我展现优势改正缺点的平台,既然教学是一门缺憾的艺术那我就让缺憾变的最小吧。
本课时主要引导学生借助计算器探索积的一些变化规律和商不变的规律,以及运用这些规律进行简便计算和解决一些简单的实际问题。在学习这部分内容之前,学生已经学习了整数乘、除法和使用计算器进行计算,有了一定的学习基础。因此,重点应放在对规律的探索方面,教学完本单元内容,我有以下几点体会:
1、教学时要留足够的时间,让学生发现探索规律,并且有独立思考的时间。上课时有些思维敏捷的孩子会一下子发现规律,并脱口而出,于是,我就让这个学生来说说是怎么想的,给还处于懵懂的孩子一些提示,小结规律后,再通过学生自己写算式来验证发现的规律,这样就加深学生对规律的认识。当然,对那些“聪明”孩子的上课习惯还是要加强培养。
2、将课堂延伸到课外,在上课前,先让学生在家里算一算例题,找找规律,这样可以让学生带着问题上课,提高课堂效率,也给学生留出了充足的时间发现规律。
3、克服思维惰性,加强估算能力的培养。发现和总结出规律后,就可以进行简便计算,一些较难的两位数乘两位数可以很快得出答案,但有些孩子为了避免犯错,会回避用规律来进行计算,而是采用比较繁琐的列竖式。出现这种情况可能有两种原因,一种是课堂上对规律的感知还不够,要适当的给这部分孩子增加练习量,进一步感受规律,提高规律掌握的熟练度。另一种是,怕粗心犯错,对于这部分孩子则可让他们算完后,进行估算,这样有利于他们养成自觉检查的好习惯,通过估算也能发展学生的思维能力和数感。