在《平行四边形的面积》一课的教学中,通过让学生动手实践,自主探究,让学生经历了知识的形成过程。这节课我设立的教学目标是:
(1)使学生通过探索、理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积;
(2)通过操作,观察和比较的活动初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。 反思这节课,我总结了一些成功的经验和失败的教训,具体概括为以下几点:
一、可取之处:
1、注重数学学习方法的渗透 在数学教学中,要注重数学思想方法的渗透。要让学生了解或理解一些数学的基本思想,学会掌握一些研究数学的基本方法,从而获得独立思考的自学能力。我在这节课中,先让学生回忆长方形的面积是怎样求的?引出你能求平行四边形的面积吗?做到用“旧知”引“新知”,把“旧知”迁移到“新知 ,有利于有能力的同学向转化的方法靠拢。重视转化思想的渗透,通过自主探究和合作学习解决实际问题。通过把不熟悉的图形转化成我们熟悉的图形来计算它的面积,这在数学学习中是一种好的方法。让学生进一步理解转化思想的好处。为学生解决关键性问题——把平行四边形转化为长方形奠定了数学思想方法的基础。我有意识的引导学生多种方法剪拼,想突破平行四边形高有无数条,拼法也有无数种,可是没有达到预想的效果。在充分动手操作的基础上采用小组合作的方法比较平行四边形和长方形长和宽的关系,推导出平行四边形面积的计算公式。
2﹑充分给足学生自主探索的时间。
本节课的教学重点是掌握平行四边形的面积计算公式,并能正确运用公式解决实际生活问题。教学难点是把平行四边形转化已学过的基本图形,通过找关系推导出平行四边形的面积公式。所以我在本课设计了让学生自己动手剪,移,拼,把平行四边形转化成一个长方形,接着小组合作完成推到过程:长方形的面积与原平行四边形的面积相等,长方形的长相当于平行四边形的底 ,长方形的宽相当于平行四边形的高,因为长方形的面积= 长 × 宽 ,所以平行四边形的面积= 底×高。学生通过亲自动手实践,实现新旧图形的转化,有利于学生主动构建新的认知结构,使知识的掌握更长久、牢固。同时在动手操作的过程中,学生的主体地位得到确立,边操作边思考,边观察边寻思,从中有所悟。
二、还需要改进的地方:
1、在进行把平行四边形转化为长方形时,让学生理解长方形的长、宽分别和平行四边形的底和高相等是学生推导平行四边形公式的关键,其中有两个学生到演示台上展示剪拼的方法的时候,说发现他们的面积相等,而我只强调了拼后的面积相等这个概念,为什么面积相等?这个关键的问题我却没有追问,由于担心时间不够也省了,忽视了学生在动手操作中,即将探究出的知识薄而未发,这样就使得学生的操作只停留到了表面,而没有在操作的过程深层次经历知识的形成过程,正因为在这个关键问题上疏忽,导致了学生对平行四边形面积推导过程茫然的情况。
2、学生在剪拼时,只注重结果,没有适时归纳过程。让学生理解只要沿着平行四边形的一条高剪下,都可以拼成一长方形。这一环节处理层次不够清晰,导致时间过长。虽然本节课能以学生为主体,教师主导,但后半部分的教学还存在着不敢放手现象。例如,平行四边形不但可已转化成长方形,如果是一个菱形(也就是四边相等的平行四边形),通过割补、平移是可以转化成正方形的,因为担心自己不能很好的把握课堂节奏,完不成教学任务,所以这节课我只处理了将平行四边形转化成长方形的一种情况,这样就限制了学生的思维,没有给学生思维的空间和机会。所以我在讲梯形和三角形的面积时便吸取了这次的经验教训。给学生思维的空间和机会,让他们从众多的方法中找到最适合自己的,加深学生对新知识的理解和掌握。
教学是一门有着缺憾的艺术。我相信做为教者的我们,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改进,我们的课堂就会更加精彩。
“数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程,数学教学要求紧密联系学生的生活实际,从学生的生活经验和已有知识出发,创设各种情境,为学生提供从事数学活动的机会,激发他们对数学的兴趣,以及学好数学的愿望。”为此,老师们都非常重视情境的创设,力求将自己置于组织者、引导者、合作者的地位,树立以学生为主体的教学观。
对于情境教学,首先我们应该充分重视“问题情境”在课堂教学中的作用,不仅要在教学的引入阶段格外注意,而且应渗透到教学过程的每一个环节,在情境中不断激发学习冲动,使学生经常处于渴求新知的状态,激发其自身的学习动力和思维空间。其次,从长远的前景来看,引入教学情境不仅要让学生“学会”数学,更重要的是使他们“会学”数学,培养他们在生活中科学地思考,把学习中探索、体会到的观念、方法尽快地提升到理论的高度。当然,要设置好情境还不可忽视情境创设和教材主旨的统一,始终坚持从激发学生的学愿望和参加动机出发。以下我将根据情境教学的要求结合《平行四边形的面积》来谈一谈?
1、把数学知识的教学融于现实情境中,学生在情境中学的高兴,学的扎实。我通过主题图这一个情境,将新知的学习置于这一现实情景中,通过猜想、转化、平移、旋转、演示等活动,进一步加强数学知识与生活的联系,感受数学在生活中的作用,体会学习数学的意义与价值。
2、充分发挥学生的主体作用,加强学生主观能动性的培养。整节课中,老师给学生提供了探究交流的时间和空间,并创设多种教学活动,激发学生兴趣,学习与巩固知识。例如在平行四边形面积计算方法推导过程中,老师先让学生独立思考,然后互相交流,最后动手操作,把平行四边形转化成长方形,推导出平行四边形的计算方法,在平等和谐的氛围中培养了学生的合作意识、团队精神和动手能力。
3、 有效的渗透了数学的一些思考和学习方法。在教学中,老师让学生经历了提出猜想—操作转化—验证猜想这一过程,对学生以后学习三角形面积和梯形面积打下了良好的基础。
4、充分利用小组合作这一课题的有效性,发挥学生的主体地位和主观能动性,加强师生合作、生生合作,培养学生的合作能力和交流能力。
《平行四边形的面积》这一课自己感触颇多,有成功中的喜悦,也有不足中的遗憾,总结本节课的教学,有以下体会。
反思这节课,具体概括为以下几点:
第一、创设问题情景,引起矛盾冲突,激发了学生的学习兴趣。
第二、重视操作探究,发挥主体作用。
为了引起学生的兴趣,我准备了一个可活动的长方形框架,如果把它拉成一个平行四边形,周长和面积有变化吗?怎样变化?如果任意拉这个平行四边形,你会发现什么?什么情况下它的面积最大?通过这个拓展题目使学生体会平行四边形面积的变化,从而理解的更透彻,运用的更灵活。使学生在练习中思维得到发展,培养学生分析问题和解决问题的能力。
第三、渗透“转化”的思想。
“转化”是数学学习和研究的一种重要思想方法,在本节课的教学中,以学生的探究活动为主要形式,教学过程由浅入深,由易到难,由具体到抽象,由感性认识到理性认识,步步深入,紧扣主题。同时渗透“转化”的思想,让学生掌握学习的方法,学会利用旧知识解决新的问题,形成积极主动的探究氛围。
第四、联系实际设计习题,学习内容始终充满生活气息。
存在的一些问题和困惑:
1、应变课堂能力的教学机智不够灵活需要多锻炼。
如新知猜想时耗时过多。
2、学生数学知识的底蕴要加强。
学生拿着平行四边形,不知道如何动手操作,把平行四边形转化成长方形。这也与我前面的铺垫、启发不到位有关,当学生不能独立作出来时,老师要及时给予指导和启发,可以这样启发:同学们看一看,平行四边形的高与底边是什么位置关系?如果能利用这一点来转化呢?沿着什么剪?
就“平行四边形的面积”的教学而言,平行四边形的面积公式是什么,不是什么?平行四边形的面积为什么是“底×高”,为什么不是“底×邻边”?通过把平行四边形不断“拉扁”,引导学生逐步了解高与面积之间的内在联系,理解高对平行四边形面积的影响,在让学生获取知识的同时,悄然无声地渗透了函数思想。
其实,澄清错误与建立正确认识同样重要。不急于引导学生对正确情况的接受,而更多地让学生自己在尝试解决问题的过程中发现问题,产生矛盾冲突,并引导学生参与对问题和错误的剖析。平行四边形面积为何是“底×高”,为何不是“底乘邻边”?疑问的解答,需要的是观察、比较、分析等充满挑战性的过程,在这样的过程中,学生一步步澄清平行四边形的面积“是什么,不是什么”,明白“这样才是正确的,那样为什么是错误的”,就会获得真正的数学理解,推理能力也能得到发展。“推拉转化后,面积发生变化”的表象得到强化,进一步澄清学生潜意识中“平行四边形的面积=底边×邻边”的错误认识。在不断地对比、交流过程中,错误经验得以纠正,模糊认识得以澄清,数学思维得以发展,创新意识和学习能力得以提升。但是在澄清与对比分析中,时间运用的也较多,对于“精讲多练”的目的没能达到。这种剖析,在日常教学中都是分多个课时进行,完全揉入一节课,甚至微型课,需要我思考如何从别处挪出时间出来,精心雕琢方有进步。
本节课是平行四边形面积计算的第一课时,重点是探索并掌握平行四边形的面积计算公式,会用公式计算平等四边形的面积(须找准平行四边形底与对应的高)。难点是探索平等四边形的面积计算公式(用割补法把平等四边形变成长方形,根据长方形面积公式推导出平行四边形的面积公式),这也是我们以后探索三角形、梯形面积公式的一种基本方法。
因此,作为第一课时,我设计的重点就在推导平行四边形面积计算公式的自然引导及探索过程和找准平行四边形的底和高计算面积底和高。一节课教学下来,反思有以下不足:
(1)从教师自身来说,有点紧张,导致关注学生不够,学生的.积极性调动不理想。
(2)从设计来说,旧知导入(出示生活中的情景图找学过的图形并抽象出长方形,平行四边形。比在教室里找图形节省时间得多);例2可作为一个基本练习,不作为例题,这样练习题型可丰富些。
(3)从现场教学效果来说,本节课设计了一个思考题可以培养学生的思维能力及空间想象能力,但因为断电和时间关系未展示;另一个最为遗憾的是学生反思与小结,应将推导平行四边形面积计算公式的过程提升到一个理性的高度,师适当用一两句话小结,以便为今后图形面积计算公式的探索打下基。
平行四边形的面积,是教师相当熟悉的一堂课,我曾多次听这课,发现平行四边形的面积教学存在三种状态:第一种状态,教师认为学生学习数学就是要掌握知识,所以教学注重对学习“平行四边形面积”的知识铺垫,仅仅关注学生对平行四边形面积计算方法的识记与演练,掌握;只要结果,不要过程。第二种状态,教师开始重视学生获得知识的过程,但重视过程是为了更快地接受知识、更好地理解知识,却忽视了过程本身的价值。第三种状态,希望学生不仅获得平行四边形面积计算公式的知识,而且能获得数学思想和方法;不仅能够正确地应用公式,而且能更好地理解这一公式的来源。在学习中,展示探求平行四边形面积计算方法的真实思维过程,凸显“重知识更重方法,重结果更重过程”的价值追求。我一直在苦苦追求着第三种状态,因此在课前、课中我一直思考以下四个问题:
1、数学学习,除了关注知识的传承,还应关注什么?
2、怎样从学生的角度出发设计教学?
3、怎样让数学课堂变得厚重?除了显性课程外,学生还能获得哪些方面的发展(隐性课程)?
一节厚重的数学课,总是能够让人看到学生数学素养的提升。
一节厚重的数学课,总是能够让人看到学生数学地思考问题。学生有潜力,并非这个孩子考试的分数高,而是这个孩子的后劲足。这些后劲足的孩子思维活跃,往往能在复杂的信息中抓住关键点,能透过复杂的现象抓住数学的本质。也就是,这些孩子会数学地思考问题。
4、如何优化课堂结构?
基于以上四个问题的思考,我把“有益的思考方法和应有的思维习惯”放在本节课教学的首位。在数学教学中如何以数学知识为载体,培养学生有益的思考方式和思想方法。我在设计与执教“平行四边形的面积”一课中获得一些启示。
一、以数学知识教学为载体,渗透“转化”的数学思想方法,发展学生主动获取知识的能力。
“转化”法是开展数学研究、解决数学问题常用的方法,在小学数学教学中起着十分重要的作用。小学阶段的几何形体面积、体积计算公式都是运用“转化”法推导的。平行四边形的面积公式是几何图形面积计算第一次运用“转化”思想方法推导得出的。因此,本节课让学生形象直观地明白什么是“转化”,深刻理解“转化”的本质,就显得尤为重要。对于“转化”思想,本节课不在是渗透的朦朦胧胧,而是把这种学习方法明朗化,让“转化”本领成为学生思维的“主角”,并当作学习的一个重点让学生掌握。
教师首先出示三个图形让学生通过比较,在直观的基础上,利用图形的转化,直接说出了它们的面积,渗透了转化的数学思想方法。这样,学生面对“计算平行四边形面积”这一新问题,就很自然地得到了两种猜想:用平行四边形相邻两边相乘(以前学习的长方形面积计算公式等知识的负迁移)和用平行四边形的底乘以高(转化思想方法的运用)。进而,教师提出问题:同一个平行四边形的面积怎么会有两个答案呢?
激发学生进一步去探究。迫使学生动脑筋想办法,用割补方法进行问题转化,验证了用“底乘高”的猜测是正确的,通过观察图形的动态变化,从比较中发现用“相邻两边相乘”是错误的。学生在这一实践活动过程中获得割补转化的数学思想方法。在练习阶段的“你会求阴影部分的面积吗?”,不仅是巩固新知,而是将“转化”本领内化成解题技巧。在课堂小结时,我不满足于学生的认识仅仅在对具体知识的获得上,而是启发学生提炼出数学的思想方法。教师最后的评价,既给学生以鼓励,更给学生以导向,导向在数学的思想方法上。因为数学的思想方法是数学的灵魂,学生拥有了它,其主动获取知识的能力将会得到提高,创造力的发展就有了基础。
二、以探索解决问题为主线,运用“大胆猜想,小心求证”的数学学习方法,培养学生探索精神和探究能力。
现代科学的探索活动,常常是人们在已有的科学知识的基础上,发挥人的主观能动性,通过想象、直觉等多种思维方法,提出猜想性假说,建立起新的概念和理论框架,推出具体结论,最后通过实验予以验证。这种“猜想—验证”的方法已成为科学探索中常用的方法。
这节课,采用先让学生“大胆猜测”,再进行“小心求证”的教学思路,教师有意识地把经历“猜想与验证”蕴涵在探究平行四边形面积公式的数学活动中。当学生对平行四边形的面积计算获得两个合理的猜想后,教师不做否定,而是要求学生对自己的想法进行检验,学生通过思维顿悟、教师的直观演示,自己发现错误的原因,这不但让学生对知识理解更透彻,影响更深刻,而且给学生学生探究发现知识的方法指导。
这样的过程,既不同于由一般到特殊的演绎过程,也有别于由具体到一般的归纳过程。它是一种发现并填补认知的空隙,即定向探索解决问题的研究过程,这符合数学知识发现的一般规律,因而具有比较一般的方法论意义。这样的数学思维方法的运用,有效地训练了学生综合运用思维方法获取知识的能力,同时也受到了科学思想方法的启蒙。
本节课是学生在已掌握了长方形面积的计算和平行四边形各部分特征的基础上进行学习关于平行四边形的面积的计算的,我能根据学生已有的知识水平和认知规律进行教学。本节课的教学目标是学生在理解的基础上掌握平行四边形面积的计算公式,能正确计算平行四边形面积,并且通过对图形的观察,比较和动手操作,发展学生的空间观念,渗透转化、剪切和平移的思想,并培养学生的分析,综合,抽象概括和动手解决实际问题的能力。重、难点是平行四边形面积计算公式的推导,使学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形底和高的关系。
一、重在每个孩子都参与
本节课教学我充分让每个学生都主动参与学习。首先,通过财主分地的故事导入,让学生大胆猜测:长方形的地和平行四边形的地哪块大?然后让他们各自说明理由,可以用不同的方法来证实自己的观点。有的孩子提出用数方格的方法,还有的孩子用剪切和平移的方法,然后再进行逐步展开。全班孩子在数格子的时候会发现问题,平行四边形的格子没有那么好数,不满1格的都只能算半格,虽然数出的答案一样,但是不太精确,而且孩子们也意识到,在现实生活中,比较地的大小是不可能用数格子的方法来进行的。所以我们着重讲转换的方法。让每个学生自己动手剪拼,转化成已经学过的图形。引导学生参与学习全过程,去主动探求知识,强化学生参与意识,引导学生运用各种不同的方法,通过割补、平移把平行四边形转化为长方形,从而找到平行四边形的底与长方形的长的关系,高与宽的关系,根据长方形的面积=长×宽,得到平行四边形面积计算公式是底×高,利用讨论交流等形式要求学生把自己操作——转化——推导的过程叙述出来,以发展学生思维和表达能力。这样教学对于培养学生的空间观念,发展解决生活中实际问题的能力都有重要作用。
二、渗透“转化”思想,让所积累的经验为新知服务
“转化”是数学学习和研究的一种重要思想方法。我在教学本节课时采用了“转化”的思想,现引导学生大胆猜想平行四边形的面积可能与谁有关,该怎样计算,接着引出你能将平行四边形转化成已学的什么图形来推导它的面积。学生很自然的想到把平行四边形转化成长方形,再来探究它们之间的关系。这样启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透“转化”的思想方法,充分发挥学生的想象力,培养了创新意识。学生把平行四边形转化成长方形的方法有三种,第一种是沿着平行四边形的顶点做的高剪开,通过平移,拼出长方形。第二种是沿着平行四边形中间任意一高剪开,第三种是沿平行四边形两端的两个顶点做的高剪开,把剪下来的两个小直角三角形拼成一个长方形,再和剪后得出的长方形拼成一个长方形。这节课学生只是拼出两种,另外一种情况(沿中间高剪开)学生没拼出来,我只好自己演示出来,让学生了解,拓宽空间思维想象。接着,运用现代化教学手段,为学生架起由具体到抽象的桥梁,使学生清楚的看到平行四边形到长方形的转化过程,把三种方法放在一起,让孩子们讨论比较,转化后的图形和原图形有什么样的关系,并以小组为单位组织语言,组长汇报。这样就突出了重点,化解了难点。通过本节课的学习让孩子们了解到转化的思想很重要,在以后推导三角形、梯形面积的计算公式时可以提供方法迁移。
虽然本节课能以学生为主体,教师主导,但后半部分的教学还存在着教师不敢完全放手的现象,课堂上有效的评价语言在本节课中也体现不够完善等等。教学是一门有着缺憾的艺术。做为教者的我们,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改进,我们的课堂就会更加精彩!