正比例的关系是在学生掌握了比和比例的基础上进行教学的,着重使学生理解正比例的意义,正比例是重要的数量关系,学生只有理解并掌握了这种数量关系,可以加深对比例的理解,并能应用它们解决一些含正比例关系的实际问题。同时通过这部分内容的教学,可以进一步渗透函数思想,为学生今后学习打下基础。
成功之处:
1、加强不同版本教材之间的联系,沟通教学内容。在教学中我采用了苏教版教材,学生对于速度、时间和路程之间的数量关系比较熟悉,学生能从表格中清楚地看到路程和时间这两种量的变化,时间增加,路程也在增加;时间减少,路程也在减少,也就是一种量变化,另一种量也随着变化,并能发现其中的规律就是速度一定,即路程÷时间=速度(一定),从而得出路程和时间是成正比例的关系,路程和时间是成正比例的量。然后通过关于单价、数量和总价之间的关系一组习题进一步巩固加深对正比例意义的理解。通过这两组数量关系的比较,得出正比例的意义,而把人教版中的例题作为了练习题处理,学生非常容易理解,掌握比较好。
2、注重学生对成正比例关系的理由阐述。在教学中,我采用三段式阐述正比例关系理由,一方面加深对正比例意义的理解,另一方面也为学习反比例意义做好铺垫。例如:
(1)路程和时间是两种相关联的量。
(2)路程/时间=速度(一定)
(3)路程和时间是成正比例关系。
不足之处:
在教学中对于三角形底一定,面积和高以及圆周率一定,圆的面积与半径,像这样类似的习题没有涉及,导致在同步练习中学生不知所措,出现很多的问题。
再教设计:
多增加一些在练习题中容易出现,又容易引发学生出错的习题来进行设置,把易错知识点在新知学习中就有所涉猎,需要对整个教学内容进行全方面的架构,练习题的设计尤其重要。
本节课学生已经对新课进行了预习,因此单刀直入地进入探究主题,通过自学让学生经历观察与思考的过程;通过观察、比较、讨论使学生进一步感知两种变化的量的关系,开发了学生的数学思维能力;通过比较、认识正比例,让学生更加直观地领会正比例的意义,并有效掌握判断两种量是否成正比例的方法,体验探索的乐趣,在本节教学重我努力注意鼓励学生观察、思考、讨论和交流。
但在本节中还暴露了几个问题:差生自学效果不高;有几名同学不能正确判断正比例;有的同学自学环节成了他们玩的时间。
总之,我将不断地反思自己,努力提高自己的业务水平。
“正比例的意义”教学,是在孩子们掌握了比例的意义和基本性质的基础上进行教学的,着重使孩子们理解正比例的意义。正、反比例知识,内容抽象,孩子们难以接受。学好正比例知识是学习反比例知识的基础。因此,使孩子们正确的理解正比例的意义是本节课的重点。在实际教学中,我注意了以下几点:
1、联系生活,从生活中引入。
数学来源于生活,又服务于生活。关注孩子们已有的生活经验和兴趣,首先让学生从已有知识中寻找相关联的两个量,然后通过呈现现实生活中的三个素材路程、速度,总价、数量,工作总量、工作时间这两个相关联的量引入新课,使抽象的数学知识具有丰富的现实背景,为孩子们的数学学习提供了生动活泼、主动的材料与环境。
2、在观察中思考。
小学生学习数学是一个思考的过程,“思考”是孩子们学习数学认知过程的本质特点,是数学的本质特征,可以说,没有思考就没有真正的数学学习。本课教学中,我注意把思考贯穿教学的全过程,让孩子们通过观察两个相关联的量,思考他们之间的特征,初步渗透正比例的概念。这样的教学,让所有孩子们在观察中思考、在思考中探索、在探索中获得新知,大大地提高了学习的效率。
3、在思考中感悟。
新的数学课程标准提倡:引导孩子们以自主探索与合作交流的方式理解数学,解决问题。在本课的设计中,我本着“以学生为主体”的思想,在引导孩子们初步认识了两个相关联的量后,敢于放手让孩子们独立思考从而归纳出正比例的意义。
4、在练习中巩固提升
为了及时巩固新知识,完成了练一练习题后,又设计了两道加深题,让学生自己研究圆的半径和圆有什么关系,正方形的边长和它的面积有什么关系,让孩子们在巩固本节课知识的同时,学会通过研究会判断,同时孩子们的思维也得到了提高;最后引导孩子们自己对知识进行梳理,培养孩子们的归纳能力,使孩子们进一步掌握了正比例的意义。可能自己在平时的教学中没有完全放手让学生自己讨论自己总结发言,所以在发言的时候学生还不能完全放开,显得有点拘谨,但通过后面的.练习,使我意识认识到学生对于正比例的意义印象非常深刻,而原因正是上课方式的改变,所以在今后的教学中应多给学生自学研究的机会,在锻炼学生的同时也给自己减压。
比例的教学,是在学生掌握了比例的意义和基本性质的基础上进行教学的,着重使学生理解正比例的意义。正、反比例知识,内容抽象,常常感觉老师教得枯燥,学生学得艰难,我认为让学生反复感知,形成充分的感性认识,在感性认识的基础上进行抽象概括,是形成概念的良好途径。因此,我在教学时首先细致安排学生初步感知,通过让学生写出路程与时间的比,求比值,找规律,写数量关系,让学生初步感知正比例的要点。
仅有例题的首次感知学生还不能形成正比例的概念,因此,我变换情境,选择与例题不同的数量:铅笔的数量和总价,耕地的时间和耕地总公顷数。让学生反复感知正比例概念的规律。这样既拓展了教材,又进一步增加了学生的感性认识。为学生高度概括正比例概念打下了基础。
有了前面充分的感性认识,我提出几个问题,引导学生有序的思考,以小组合作交流的形式,让学生进一步突破正比例概念中的一些关键词,如:相关联的量,相对应的数,比值等,学生在合作学习时互相交流,互相讨论,把各自对正比例概念的感知会聚,综合,从而抽象出正比例的意义是:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的、比值一定,这两种量就叫做成正比例的量。
在这节课中,学生通过对正比例的初步感知,不同情境下的反复感知,讨论探究等过程,积累了对正比例概念的丰富的感性认识,并以此为基础高度概括出了正正比例的意义,从而牢固的掌握了正比例的意义,取得了较好的效果。
正比例这节课是在正比例与反比例这一单元的第二课时,在学生体会了生活中存在大量的相互依存的变量的基础下学习的一课。为了让孩子们更好地理解本节课的内容,我采用教材提供的两个问题情境:首先是正方形的周长和边长、面积和边长变化关系的情境,采用表格的形式让孩子们观察数据的变化情况,从而初步感知“变化过程中,正方形的周长与边长的比值是一定的”,为接下来学习正比例奠定基础。
本节课开始,我采用回忆导入新课,通过复习让学生更加深刻地理解和感受两种相关联的量之间的变化规律和为探究新的知识做好铺垫。
紧接着我采用书中41面给出的2个表格,让同学们通过观察、思考、交流、讨论等过程,让孩子们总结发言概括。最后引导学生质疑在第一个问题中,正方形的周长和边长、面积与边长成正比例吗?通过具体情境让给孩子们更加深刻地理解正比例的含义,并且掌握判断两个量是否能够组成正比例的方法。
课本41页下方给出了一个描述性的定义:像这样,路程和时间两个量,时间变化,所行驶的路程也随着变化,而且路程和时间的比值(也就是速度)一定,我们就说路程和时间成正比例。在教学这一部分时,由于书中的概念比较长,我没有让孩子们将书中长段文字转化为两点:
1、两个相关联的量。
2、比值不变。
处理这一部分的时候我没有给孩子们足够的时间去自己发现总结,而是我自己边讲解边总结了两点,并直接告诉了孩子们后期判断两个量是否能组成正比例要紧扣两点进行阐述。
这一部分其实可以让孩子们自己概括总结这段话,并从中提炼出精华,多好的一个锻炼机会,我没有抓住。后期我会多锻炼孩子们的总结概括能力,不能做一个急教师,要对孩子们的思考和总结有所期待。细细想一想我自身的原因很大,我要慢慢培养自己做一个快乐的“懒教师”,后期要怎么“偷懒”还需要我在平时的课堂上多下点功夫,勤思考,多动脑。本周三要上反比例这节课,期待在这节课中孩子们的表现。
在教学成正比例的量之前,学生们已经学会了一些常见的数量关系,如:速度、时间和路程的关系,单价、数量和总价的关系等,而正比例是进一步来研究这些数量关系中的一些特征。在教学例1,自学例2时,我都鼓励学生去观察,去探索。尤其是例1,通过学生观察,找出规律,填写表格。通过观察,让学生自己去发现成正比例的两种量的特点,从而充分体现学生学习的自主性,在揭示成正比例的两种量的特点及性质时,让学生根据问题:
1、表中有哪两种相关联的量?
2、相对应的路程(总价)是怎样随着时间(数量)的变化而变化?
3、相对应的路程(总价)和时间(数量)的比分别是多少?比值是多少?比值表示的意义是什么?来组织、归纳、得出其性质和意义。在教学例2时,我安排了自学,让学生自主的去获取知识。每个学生都希望自己的想法能跟老师的接近或相同,这样他们会有成就感,从而增强他们学好数学的信心。在整个教学过程中,我始终处在引导、辅助的地位。让学生成为课堂的主人,让他们尽情表达对于知识的见解,让他们深深感受到这间教室是属于他们的,这节课是属于他们的。让每个学生都有回答问题的机会,因此这节课的教学效果比较好。有下面几点反思:
1、学习方式的一点点转变,带来学习效果的一大块进步。要改变以往接受式的学习,多给学生探索、动手操作的时间与空间,让学生在探索中自主发现规律。实践表明,学生喜欢动手操作,
喜欢有挑战性的问题,能够积极主动投入到学习中。在正比例的练习中,学生都能够用除法去验证结果是不是一定的,从而判断两种量是否成正比例,可见教学效果非常好。
2、重视知识的形成过程,放慢学习速度,有助于概念的理解。新课程标准中强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。正比例意义一课包含的难点很多,正比例的意义,正比例的图像都是教学的难点,如果把这些知识都集中在一堂课中,学生囫囵吞枣,理解得不深不透。
本节课把教学目标定位于正比例的意义,并且在发现规律上重点着墨,看起来好像是浪费了很多时间,俗话说:“磨刀不误砍柴功”,学生在知识的形成过程中,已经深刻理解了重点词“相关联的量”、“比值一定”的含义,为后继学习扫清了障碍。
《正比例的意义》这节课是一节抽象的概念教学,怎样变抽象为直观,是这节课设计的着力点。我参考了许多优秀的案例,都是用有规律的数量来揭示概念。本节课中,我在设计概念的定义这一环节时,首先是让学生观察课本情景图中的记录表,得到信息,发现规律,总结概念,再由课本中具体的工作总量、工作时间、工作效率之间的关系,推广到生活中的其他数量之间的关系,让学生从定义中去寻找发现正比例关系的本质特征,即具备正比例关系的条件是什么。就在这样的顺势思维和逆向反馈中去强化概念,学生掌握的比较深透。
课本中的第二个知识点是出示了一幅正比例关系的图象让学生探究学习。其目的是让学生通过图象加深对定义的理解。在这节课设计之初,我依照课本的这种安排,认为它呈现的就是一幅正比例图像,用正比例图象这个概念来理解正比例关系更加抽象,理应放在学习了定义之后再来探究。反思这个教学内容,从图象得出的过程来看,是否可以站在学生思维循序渐进发展的角度,增强学生直观化学习的方面,用知识迁移的教学方法,让正比例图象在统计图的知识基础上完成过渡,然后把它嵌入到第一个知识点的学习之中呢?
其实,正比例关系的图象正是学生所学过的折线统计图的一种特殊形式,是由折线变为了直线。它实际就是表示了两个相关联的量之间的变化关系。而正比例的意义的教学恰巧需要这样一条直线来验证,给学生留下表象。如果让正比例的图像适时地以统计图的形式出现在正比例的概念教学中一定会出现更好的学习效果。在课堂中当学生通过观察记录表发现信息和规律后,由教师提示,把这两种量的关系用折线统计图的形式展示出来会是怎样的呢?学生通过描点连线,就会得到一条无限延伸的直线,两种量的变化关系更加直观地呈现在学生自主操作的结果中。然后学生在教师的引导下得到正比例关系的定义。即把课本中的第二个知识点的学习巧妙地安排在第一个知识点的学习之中,对概念的掌握和图像的理解互为有利。
用图像来理解定义有三个深层的含义。第一,图像的直线变化形式,即在渗透三个相关联的量中有一个量是固定不变的,也就是另外两个量的比值是一定的。第二,直线的无限延伸性给了学生充分想象的空间,即这两个量的变化关系也是这样永恒持续下去的。第三,直线的构成是无数点的集合,学生在知道明确的几个点的量的关系的同时,依靠想象得出,点与点之间的无数个不确定的量与量之间的关系。
总之,作为一线教师,更多的时候是在课本先入为主的引导下进行教学,没有站在学生发展的角度来审视教材,缺少了自己的思考,不能让课堂最优化。在以后的教学中,应充分发挥教师灵活处理教材的能力,让教材成为一个载体,而不是固定的版本。
《正比例》这一节涉及到的知识点比较多:比的意义、比的化简、比的应用、比与分数和除法的关系、商不变的规律等等。在上一节学习《变化的量》时学生已经体会到生活中存在着变量之间的关系。这些为学生学习正比例,理解正比例的意义奠定了基础。《正比例》一节主要是让学生理解正比例的意义以及如何判断两个量成正比例?这一节课我是按照课本上的一系列情境来展开教学的。首先出示正方形周长与变长、面积与边长之间变化情况的表格,并让学生说说发现了什么?先引导学生填写表格,并说出两组变量之间的变化情况,然后找出两者之间的共同点,引导学生说出不同点。接着呈现速度一定,路程和时间这一组变量的变化情况表格,先填写表格,然后观察发现了什么?
最后,引出正比例的意义及判断的依据,并让学生用自己的话说一说的的理解:如何判断两个量成正比例。学生总结得出结论:判断两种量是否成正比例的依据:
1、两种变量是不是相关联的两个量;
2、在变化的过程中,这两种量的比值是否一定。
但是在教学中同样也感觉到,当学生在找出两个量之间的关系时:
部分学生读出时:一分之四。这样读其实也不错,但是严格分析背后原因,学生对比的意义以及比与分数的关系掌握的还是不太好。另外,部分学生对如何判断两个量成正比例不能有序、有据的思考。继续让学生通过理解来记忆。让学生相互之间、小组之间说说对正比例意义及判断依据的理解,达到对该概念的内化。
这部分内容是在教学过比和比例的知识的基础上进行教学的,着重使学生理解正比例的意义。单从教材的量来看,书本从第11页至13页,满满的三页纸,要比一般的语文课文还要长,从这点上让我感受到教学难度相当大。从内容上看,“成正比例的量”这一内容,在整个小学阶段是一个较抽象的概念,他不仅要让学生理解其意义,还要学会判断两种是否是成正比例的量,同时还要理解用字母公式来表示正比例关系,要渗透给学生一些函数的思想,为以后初中学习打下基础。
根据教材和内容的特点,我选择了师生互动,以教师的“引”为主导,学生为主体,让学生在互动交流中去理解成正比例的量这一概念。首先,让学生弄清什么叫“两种相关联”的量,我引导学生去从表格中去发现时间和路程两种量的变化情况,在变化中发现:路程随着时间的变化而变化的,同时引导学生初步感知成正比例的两种量的变化方向性。其次,我进一步引导学生考虑:路程随着时间的变化而变化,在这一变化过程中,有什么规律呢?学生看了表中之后,发现路程和时间比的比值是一样的,都是90。
这时,教师也举了一个例子,就是450÷9=50,从反面的例子,让学生理解相对应的路程和时间的比的比值都是90,从而突破了正比例关系的第二个难点。两种量中相对应的两个数的比会一定。把学生对成正比例量的意义的理解成一系统。由于学生还是第一次接触这一概念,之后,例2的学习还是让学生对比着例1来自己理解数量和总价的正比例关系。最后,再两个例题学习的基础上总结出成正比例量的意义,把这意义从局部的路程和时间、数量和总价推广到其他数量之间的关系。