“找次品”是人教版数学五年级下册第七单元数学广角的内容。这节课中要找的次品是外观与合格品完全相同,只是质量有所差异,且事先已经知道次品比合格品轻(或重),另外在所有待测物品中只有唯一的一个次品。
在教学内容上安排了两个例题:例1通过利用天平找出5件物品中的1件次品,让学生初步认识“找次品”这类问题基本的解决手段和方法。例2的待测物品数量为9个,在实验上具有承前启后的作用。便于学生与例1的结果进行对比,从而总结出解决该问题的一般思路。
在授此课时,通过身边生活实例,为学生创设问题情景,让数学问题生活化,一上课就吸引住学生的注意力,调动他们的探究兴趣,为后面的教学做好铺垫,使学生进入最佳的学习状态。设计这一环节,联系生活实际,可以激起孩子们学习的兴趣,让学生充分感受到数学与日常生活的密切联系。能使学生肯动脑、想参与、乐学习。
按照例题,本课例1是从5瓶钙片中找到次品,而我却让同学们先从3瓶口香糖中找出次品,这样就降低了教学起点,学生很容易的从3个中找到次品。那么在后面的5瓶、9个中找次品就容易多了。不会产生挫败感,增加成功的体验,使本课更容易进行。
本课我让同学们从3个中找出次品这比较简单,然后加深到从5个、9个中找次品,并且在9个中找次品的过程中渗入优化思想,让孩子们寻找优化策略,接下来让学生再用27进行验证,加深了学生的体验。整个教学过程注重让学生经历了探索知识的过程,使他们知道这些知识是如何被发现的,结论是如何获得的。在此过程中知识层层推进,步步加深,让孩子的推理能力慢慢地达到一定的高度,思维也不至于感到困难。
在教学过程中,我充分的运用了研究性学习的教学方法,不把现成的答案或结论告诉给学生,而是试图创设出问题情境,引发学生认知上的矛盾、冲突,激起学生探求知识经验和事理的欲望,继而调用已有的知识经验和生活积累,提出解决问题的猜想和策略,并通过观察、实验、操作、讨论、思索等多种活动进行研究检验。在研究性数学学习中,知识不再是被学生消极接受的,而是学生自身积极地、主动地去探求获取的。学生在教育教学中是发现者、研究者,充分体现学生的主体地位。
想快捷准确解决此类型问题,教师可以用五分钟左右的时间向学生灌输结论性的解题方法,即每次尽量将物品平均分成3份(如不能平均分时,也应使每份的相差数不大于1),然后用大量时间让学生进行巩固练习,强化这种方法。这样的教学虽然短时高效,但却只重结论,忽视了学生探索精神的培养,学生少了发现后的欣喜与快乐,缺乏比较、综合等思维能力的锻炼。为此,我今天给予学生充足的时间去独立探索、尽量地显现他们的不同称法,最后通过对比发现了结论。这样的教学显然费时较多,练习二十六第4、6、7题都没能在单元时间内完成,必须再增加一个课时练习课,但学生们学得开心,思维十分活跃。
在教学例2时,学生们发现9个物品不可能按教材所说分成4份(2,2,2,3)放在天平上称。因为将其中两个2放在天平上称过以后,剩下的2与3是不同能可时放在天平两边的,所以这种分法应该改为分成5份,即(2,2,2,2,1)。而这种方法实质与9分成4,4,1是一致的。因此,学生认为教材这种分法不合理。不知大家怎么认为?
因为9不能平均分成两份,因此学生们普遍选择了分3份。个性化解法丰富多彩,除了教材中提到的4,4,1;3,3,3外,还有2,2,5和1,1,7两种不同分法。这些分法中除平均分成3份以外的分法外,其它都至少需要称3次才能保证找出次品,所以通过观察比较,学生自己发现了解决问题的策略。一是把待分的物品分成3份;二是要分得尽量平均,能够平均分的平均分成3份,不能平均分的,也应使多的与少的一份只差1。
最后总结规律:“只要记住物品总数在2——3之间,需要称1次就能保证找出次品;在4——9之间,需要称2次;在10——27之间,需要称3次……。”我引导学生独立阅读137页的“你知道吗”。大家普遍认为这种方法好,如果是填空题可以根据表格快速填写,节省时间;如果是解决问题,可以根据表格核对自己的结果。但记不住数据怎么办?“从上表你能发现什么规律吗?”一石激起千层浪,对照数据寻记忆窍门。果然,不一会儿功夫,刘思源同学就发现了隐藏的规律。“要辨别的物品数目2——3;4——9;10——27;28——81……”,这里的后一个数3,9,27,81都是不断乘3得来的。因此,只需记住第一组数据,然后将3依次乘3,即可得到每组数据的第二个数,第一个数则是前一组数据中第二个数+1得到的。
《找次品》是人教版数学五年级下册第七单元数学广角的内容。本节课以找次品这一操作活动为载体,让学生通过观察、猜测、试验等方式感受解决问题策略的多样性,在此基础上,通过归纳、推理的方法体会缩小待测物品范围的优化策略。初步培养学生的应用意识和解决实际问题的能力。
对传统设计思想的分析
传统设计一般是首先找5个零件中的次品(目标:在认识平衡与不平衡两种可能结果的基础上引导学生画框图,经历逻辑推理的过程);再找9个零件(目标:找到最优称法,形成猜想);然后称8个,27个,探索规律;最后称100个、243个零件(目标:继续学习化归方法,找到零件个数与称的次数之间的关系)。这种设计从过程来看体现了操作----猜测----验证----归纳----应用的教学思路,它的`重点放在学生优化方案的比较上。这样设计有两个弊端。
问题一:按这种单刀直入式进行研究,因学生的知识和方法储备不够、跨度过大,思维难以突然从方法多样性提升到最优化策略上来,学生的思维容易断层,探究会屡屡受挫,从而造成对此类问题的探究兴趣不足,影响学生思维的主动性。
问题二:在9个物品中找次品的探究过程中,让学生猜想最佳策略:分三堆,每堆尽量同样多的规律,学生不容易找出来,再让学生举例验证更难。学生探究的多样化一方面暴露了学生的思考过程,另一方面也影响了学生对最佳策略的关注。如何通过优化策略的形成,提升学生的思维品质,高老师进行了如下的探索。
探索适合学情的实践尝试
1、巧:游戏互动做铺垫--巧妙渗透优化思想
在学生的猜数过程中,高老师总让学生处于最不利的处境,除非他选择了最佳策略,否则猜的次数总是最多。高老师心中想的数不是固定的,是根据学生的猜在不断的变化,也就是说,一开始他心中并没有想好一个具体的数。让最不利发挥到极致时,学生就会最大限度地理解策略的重要性。通过找中间数,学生认识到运用缩小范围猜数可以提高效率,让学生在无意识的猜数游戏中感悟快速猜数的方法与策略。
2、趣:交流策略多样化---引出优化方法
有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式。在这一环节中,让学生动手动脑,亲身经历分、称、想的全过程,从不同的方法中体验解决问题策略的多样性。我让学生用肢体模拟天平来进行实践探究,学生非常感兴趣。高老师放手让学生探究3个、5个测品中找一个次品,体现策略多样化,引出优化的方法,分三原则。图示法较为抽象,对学生来说不容易理解,教学时我根据学生的回答同步板书,即外显了学生的思维痕迹,又便于学生理解每项数据的含义,为后续的学习打下一定的基础。
3、实:打破常规设悬念---激起优化需求
如果说数学思想方法是可以传授的话,那教师肯定是把其中富有思考意义的东西机械化了,这样就失去了它应有的价值。所以渗透优化思想一定要让学生经历了自主体验和反思顿悟的过程。本节课高老师打破常规,让学生大胆猜测:如果有2187个测品中找一个次品,你认为至少称几次保证找到这个次品?要想解决这个问题,你觉得有什么办法?(把数据变小些,并举例研究。)激起学生优化需求,学生也从中认识到以退为进是一种很好的学习策略,为渗透化繁为简的数学思想走好了坚实的一步。
4、准:找准盲区巧点拨---形成优化策略
学生挑战在100个中找次品时,高老师及时点拨引导——当遇到一个问题时,我们迈出第一步至关重要。结合课前游戏,借鉴缩小范围的策略。小组合作拟订第一步怎么办?的计划。当出现分2份和3份的对比分析时,我又适时提问导引:是不是分的份数越多越好呢?让学生在例证中归纳出将待测物品尽量等分成三份的规律来。用准时点拨为学生扫清思维盲区,为优化策略的形成搭桥铺路。
探索实践后的启示与思考
启示一:发展才是硬道理。在备这课时,高老师也考虑到用天平来操作演示,但由于现场条件的限制----没有准备现成的天平;同时又考虑到学生用天平来称在操作上也会很麻烦,以前对天平的结构、用法以及平衡与不平衡所反映的信息都已经有了很好的掌握,在此处多用时间有喧宾夺主、影响主题的嫌疑,因此他在本节课中没有把实物天平带进课堂,而是让学生用自己的肢体演示代替天平操作。只要能让学生得到发展,删繁就简是很划算的。
启示二:万丈高楼平地起。解决再难的问题,丰实基础是至关重要的。为了让学生的思维顺利由方法的多样性转向最优化,高老师在教材例1之前增设在3个中找次品的环节,目的有二:
1、走实第一步。在这一环节中让学生重温天平的结构和用法,收集平衡与不平衡所反映的信息,为后续研究储备能量。
2、强化和预示方法。通过在3个中找次品的演练,引起学生思维方法的先入为主趋势,同时也顺应了学生的学习从模仿开始的习惯。要想学生的思维提升的更高,必须把思维的基础打得最牢。
思考一:经历了本堂课的预设与生成后,对于本课这样有一定难度的教学内容,教到怎样一个度是最合适的?
思考二:这节课中,对于最佳策略的成因还有没有更好的、更有说服力的解释方法呢?
古希腊数学家毕达哥拉斯说过,在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。从高老师的数学课中,我们领悟到了这样的理念:通过数学学习,领悟数学思想和方法,提升学生的思维品质。
一、尽量体现教材意图。
《找次品》是新课标人教版教材五年级下册数学广角中的内容,优化时一种重要的数学思想方法,可有效地分析和解决问题。本单元主要以“找次品”这一操作活动为载体,让学生通过观察、实验来体会解决问题的多样性,在此基础上,通过推理的方法运用优化解决问题的有效性。
二、尽量体现“数学味”。
数学味或者说数学化是现在数学课堂提倡的理念,是我们所追求的。那么,怎样体现出数学味呢?怎样运用数学的眼光观察与认识生活中常见的数学问题呢?教师在本节课作了一些努力,例如:出示5件物品,找出其中的一件次品。让学生经历多次观察、比较、分析,在师生之间的交流和互动中,加强横向与纵向数学化的过程,使学生能从找次品的具体实例中初步了解蕴含其中的一些简单信息。
三、尽量体现方法渗透。
本节课中教者还力图渗透一些基本的学习方法,观察、比较、分析、猜测等方法贯穿整节课。我觉得,如果单单让学生获得一些有关找次品的知识似乎意义不大,而日常生活中的很多问题也不可能在一节课中一一认识,只有具备了一双善于发现的眼睛和一颗乐于探索的心,才能更多更好的学会找次。
“找次品”是五年级下学期数学广角里的教学内容,属于一节思维训练课,主要培养学生的优化意识和逻辑推理能力,同时掌握找次品的最优方法。这节课我在认真分析教材的基础上,并根据学生的认识规律和思维方式进行了设计,反思整节课。
接到期末考试的时间,确实有点紧,在请教有经验的老师怎样讲的前提下,直接让学生讨论找次品的最优方法。学生说:“分组法最省时间。”我直接说:“好!下面讨论怎样分组最优方案。”
“我总结出来了,分成三份。”
“当待测物品的数量是3的倍数时,把待测物品平均分成三份,能保证用最少的次数找出次品。要平均分成三份哦!”
“说的很到位,谁还有补充。”
“当待测物品的数量不是3的倍数时,也把待测物品分成3份,每份个数尽可能接近,使多的一份与少的1份只相差1。”
“补充的很全面,把樊静祎与刘懿贤的加起来就是找次品的规律。”
“好,下面咱们来实战一下!”
让学生把小状元拿出来,开始做!由于刚才讲的快,所以让学生说答案的时候必须说思路。
没有想到,孩子们掌握的这么好!心里窃喜。
找次品”的教学内容本来是在“奥数”活动中有时出现的,现在青岛版教材五年级下册数学与生活中选入,对培养学生动手能力和思维能力都是比较好的课。课本主要以“找次品”这一学习活动为载体,让学生在具体的学习活动中渗透“优化”的教学思想方法。
在教学中,我先让学生掌握用天平找“5个零件的次品”的方法后,我让学生猜想,如果9个物品中也有一个次品,几次一定能找到?学生设想了好几种方案,我采用分组检验,看谁的速度快。通过评价巧妙地把寻找最优方案蕴涵在竞赛活动中,极大地调动了学生主动参与学习的积极性。在引导下,学生通过观察、对比、讨论,发现了把待测物品平均分成三份的最优方案。随后我又提出8个物品中找次品由学生独立设计法案,在多种方案的比较中发现,如果待测物品不能平均分成三份,则要分得尽量平均。
新教材中的“数学广角”一直是教师感叹难教、学生感觉难学的内容,这次“找次品”也不例外。为了让学生低起点,拾级而上,我将例1单独作为一课时来教学。反思本课教学,有成功也有困惑:
一、两处成功
1.注重学生的自主探索
想快捷准确地解决此类型问题,教师可以用五分钟左右的时间向学生灌输结论性的解题方法,即每次尽量将物品平均分成3份(如不能平均分时,也应使每份的相差数不大于1),然后用大量时间让学生进行巩固练习,强化这种方法。
这样的教学虽然短时高效,但却只重结论,忽视了学生探索精神的培养。苏霍姆林斯基说过:“在人的心灵深处都有一种根深蒂固的需要,就是希望感到自己是一个发现者,研究者,探索者,而在儿童的精神世界中,这种需要特别强烈”教学中教师是学生学习的组织、引导者、合作者,而非知识的灌输者,因而对一个问题的解决,不是要教师将现成的方法传授给学生,而是教给学生解决问题的策略,让学生在积极思考、大胆尝试、主动探索中,获取成功并体验成功的喜悦。
为此,我给予学生充足的时间去独立探索、尽量地显现他们的不同称法,最后通过对比发现结论。如我首先安排了从2~8个零件中找次品,采取学生动手实践、小组讨论、猜想探究的方式教学。要求学生说出各种找次品的方法,从而让学生感受解决问题策略的多样性;其次安排了9个零件,通过小组合作交流,的学习方式。并要求学生归纳出解决这类问题的最优策略,从而让学生经历由多样化过渡到优化的思维过程。如分几份最好?每份几个最好?引导学生发现把零件分成3份称的方法最好,进一步认识“找次品”这类问题,探索解决问题的最优方法。
2.重视“数学化”。
用语言描述找次品过程,当遇到使用天平次数较多时,叙述起来十分麻烦。在例1教学过程中,学生们更乐意用绘制简单天平示意图的方式表示找的过程。可是随着物品个数的增加,这种方式虽然形象直观,但毕竟不方便。“繁”则思变,教材137页第5题用简单文字加箭头的方式清晰描述过程10个物品分成3份:3个、3个、4找次品。这种方式比画天平简洁得多,但有没有更简便的记录方式呢?《教参》中为我们介绍了一种树形图。这种树形图用小括号代替了“把物品分成几份,每份分别是几”的叙述,一目了然。同时还吸收了箭头示意图的优点,用两个分支表示称得的不同结果。但我觉得“天平两边各放3个”这类语言能否符号化,使图示更具有数学味,也更简洁。当天平两边各放3个平衡时,再将4个物品分成3份,1、1、2,后面也应按前面格式写明“天平两边各放1个”,接着按平衡或不平衡分析,这样思维才能完整体现。经过自己的修改,我将树形图改为如下格式:
我通过在两个数字下划线的方式代表“将这两堆物品分别放在天平两边”,这样既减少了文字,又方便最后统计次数。每种情况,最后只需数一数共划了多少条横线即可,既准确、又形象。
二、两点困惑
其一、找次品的题目一般都是求“至少称几次就一定能找出次品”,在使用树形图记录中,是否必须在最后标明谁是次品。即上图是否必须像这样写:
其二、当所分物品是偶数个(如4、6、8)时,我发现学生更亲睐于将其平均分成2份。这种分法在总数是4和6时,并不影响最少次数,但如果是8个物品时,如果平均分成2份,则至少需要3次,而如果分成3份(3、3、2),则只需要2次就可以找出次品。所以,要引导学生发现规律:应尽量将物品分成3份,能够更好找出次品“找次品”显得有些牵强。在练习中,有部分学生仍旧痴迷于平均分成2份的方法,在“做一做”中就有部分学生将10分成5和5,用这种分法同样也能做出正确结果,这时教师该怎样评价?