九年级圆教学反思(通用11篇)

张东东

  九年级圆教学反思1

  圆的认识是在学生对圆有了初步感性认识的基础上来进行教学的,目的是为以后学习圆的性质及圆柱体、圆锥体等知识打下基础。为引导学生动手、动脑,主动参与知识的形成过程,这节课的教学设计主要突出了以下几点:

  一、把握学生已有知识经验,利用变化的幻灯片实现课堂有效学习。

  学生对圆并不陌生,生活中这个完美的曲边图形几乎处处可见,全部学生都能从若干个平面图形中挑出圆。学生看到的圆一般都是静态的,而圆的本质特点是到定点距离等于定长的点的轨迹,是动点的轨迹,这和直边图形有着本质的区别。要想让学生感悟圆的图形性质特征,就需要让学生看到动点,看到圆“动态生成”的过程——点动成线。圆是由一条封闭曲线围成的图形,它的特征主要体现在隐形的线段——半径和隐形的点——圆心上。

  二、充分发挥学生的动手操作能力,动手学数学。

  教师在学习的过程中应时刻关注学生的发展,尊重学生的选择,充分体现学生的主体性。新课标指出:“学生是学习的主人”,教师要“向学生提供充分从事数学活动的机会”。对圆的认识我的设计是从画圆开始。首先让学生利用手中的工具尝试自己画圆,然后展示所画的圆并说说用什么画的,重点放在用圆规规范画圆上。利用投影,先展示学生用圆规画圆的过程,然后让其他学生补充用圆规画圆的过程中需要注意的事项,使学生明确画圆时的定点、定长。这样的设计目的是让学生初步感知画圆可以利用手中的现有圆形物体来描画,也可以用圆规画出更规范的圆。

  三、创设开放的生活情境,展现学生的不同思维。

  每个学生都有分析、解决问题和创造的潜能,但是学生个体之间存在着一定的差异,这是必然的。学生在生活经验、认知特点、思维方式等方面的差异要求教师要适当创设开放性的问题情境,使学生能从不同的角度进行思考和探索。本节课几处开放性的设问都为学生创造了机会,使其不同思维都能在课堂中闪光。例如在解决“为什么车轮做成圆的”这一问题时,学生就展现出了不同的思维水平。绝大部分学生可以发现在同一圆内所有半径相等。学生用量的方法量出多条半径的长度,从而推断出所有的半径都相等。

  四、利用多媒体调动学生的积极性。

  利用多媒体的动画演示,学生不仅认识了圆的各部分名称,学会了画圆、而且掌握了圆的特征,半径直径之间的相互关系,更重要的是通过学生的主动探究过程,使学生从知识的积累和能力的发展走向素质的提高;使学生学会了从不同角度来思考问题,创造性思维得到了培养和发展。

  这节课也出现了一些问题,一是没有给学生充分的时间探索圆的特性,二是学生在动手操作上还有许多的问题,另外,在动画制作上差距很大。

  针对这三方面,在今后教学中,要不断完善,虚心学习,努力做到以学生为主,提高教学效率。

  九年级圆教学反思2

  1、突出了数学课堂教学中的探索性

  关于圆的内接四边形性质的引出,在本教学案例上没有像教材那样直接给出定理,然后证明;而是利用《几何画板》采取了让学生动手画一画,量一量的方式,使学生通过对直观图形的观察归纳和猜想,自己去发现结论,并用命题的形式表述结论。关于圆内接四边形性质的证明,没有采用教师给学生演示定理证明,而是引导学生证明猜想,并做了进一步的完善。这种探索性的数学教学方式在其后的例题讲解中亦得到了进一步的贯彻。这样既调动了学生学习数学的积极性和主动性,增强了学生参与数学活动的意识,又培养了学生的动手实践能力。同时,也向学生渗透了实践——认识——再实践——再认识的辩证观点。一方面,使数学不再是一门单调枯燥,缺乏直观印象的高度抽象的学科,通过提供生动活泼的直观演示,让学生多角度,快节奏地去认识教学内容,达到事半功倍的教学效果;另一方面,计算机所特有的,对数学活动过程的展示,对数学细节问题的处理可以使学生体验到用运动的观点来研究图形的思想,让学生充分感受到发现总是代和解决问题带来的愉悦,培养学生的数学创新意识。

  2、引进了计算机《几何画板》技术

  本课例在引导学生得出圆内接四边形的性质时,通过使用《几何画板》,从而实现了改变圆的半径,移动四边形的顶点等,从而使初中平面几何教学发生了重大的变化,那就是让图形出来说话,充分调动学生的直觉思维。这样一来不仅极大地激发了学生学习的兴趣,而且比过去的教学更能够使学生深刻地理解几何。当然,本教学案例在这方面的探索还是初步的,设想今后通过计算机技术的进一步开发与应用,初中平面几何课能够给学生更多动手的机会,让学生以研究的方式学习几何,进一步突出学生在学习中的主体地位。

  3、引入了数学开放题

  本教学案例在增大数学课堂教学的探索性,计算机技术进入数学课堂的同时,在学生作业中还增加了开放题(作业2),为学生创造了更为广阔的思维空间,对此应大力提倡。目前,世界各国在数学教育改革中都十分强调高层次思维能力的培养,这些高层次思维能力包括了推理,交流,概括和解决问题等方面的能力。要提高学生这种高层次的思维,在数学课堂教学中引进开放性问题是十分有益的。我国的数学题一直是化归型的,即将结论化归为条件,所求的对象化归为已知的结果。这种只考查逻辑连接的能力固然重要,并且永远是主要部分,但是,它不能是惟一的。单一的题型已经严惩阻碍了学生数学创新能力的培养。在数学教学中还可将一些常规性题目发行为开放题。如教材中有这样一个平面几何题“证明:顺次连接四边形四条边的中点,所得的四边形是平行四边形。”这是一个常规性题目,我们可以把它发行为“画一个四边形是什么样的特殊四边形,并加以证明。”我们还可用计算机来演示一个形状不断变化的四边形,让学生观察它们四条边中点的连线组成一个什么样的特殊四边形,在学生完成猜想和证明过程后,我们进而可提出如下问题:”要使顺次连接四条边的中点所得的四边形是菱形,那么对原来的四边形应有哪些新的要求?如果要使所得的四边形是正方形,还需要有什么新的要求?”通过这些改造,常规题便具有了“开放题”的形式,例题的功能也可更充分地发挥。在此,我们进一步强调培养学生创新意识的数学课堂教学,不应仅仅把开放题作为一种习题形式,而应作为一咱教学思想。这种教学思想反映了数学教学观的转变,这主要反映在开放性问题强调了数学知识的整体性,数学教学的思维性,数学解决问题的过程性,强调了学生在教学活动中的主体作用于以及有利于提高学生学习的乐趣,提高了学生学习的内在动力等。

  九年级圆教学反思3

  圆,对于学生来说,第一感觉就是抗拒。因为圆属于几何的内容,学生一般不喜欢学几何,所以就不想学了。因此,在引入的时候,我特意地举了一些几何问题和我们的生活有哪些相关的,圆在我们的生活当中是如何重要的,先给学生一个大体印象。引入完毕之后,为了破除学生那种遇难退缩的情绪,我特意让学生知道只要用心学,专心听讲,学习数学也不是一件很难的事情。为了调起学生的积极性,我先让学生阅读书本,把该掌握的知识点、概念一一找出来,然后在黑板上画了一个图,让学生利用自己所理解的,找到相关的内容,然后答对者进行加分。学生听到有分加,积极性就起来了,很多同学认真地阅读了书本,对于一些易理解又容易答对的问题,我特意给那些中下生回答,大家在课堂上都找到了乐趣。

  从这一节中,我弄懂了一个道理,人都喜欢学习自己能够很快明白的知识,只要你能够把知识从复杂变得简单,把学生的抗拒变成愉快地接受,这就成功了。特别对于能力不强,处于想学与不想学之间的学生,作为老师一定要想尽办法把他们的积极性调动起来,要引导她们去学,不要放弃。有时候,可能你的一句表扬,你的一点鼓励都是她们前进的动力。

  九年级圆教学反思4

  新课标指出,自主探究,动手实践,合作交流应成为学生的主要学习方式,教师应引导学生主动地从事观察‘实验’猜测、验证、推理与交流等数学活动,使学生形成自己对数学知识的理解和有效的学习策略。学生在前面已学习了点与圆、直线与圆的位置关系,已获得了探究此类问题的方法,因此在本节教学中让学生动手操作,自主探究,设计表格让学生探究完成,有目的、有思考。

  本节课有以下几个特点:

  1、圆与圆的位置关系特别是相交关系理解有一定难度,教学时借助多媒体动态演示,以帮助理解。

  2、借助图形变换思想,研究图形的对称性。

  3、利用生活中的数学引入本节内容。

  需改进之处:教材之外内容少补充,大胆放开,把概念的形成过程、方法的探索过程,结论的推导过程、公式定理的归纳过程等充分暴露在学生面前,让学生的学习过程成为自己探索和发现的过程,真正成为认知的主体,增强求知欲,从而提高学习能力、

  九年级圆教学反思5

  本节课的教学策略是通过通过白板动画演示学生观察、思考、交流合作活动,让学生亲身经历知识的发生、发展及其探求过程,再者通过教师演示动态课件及引导,让学生感受圆的旋转不变性,并能运用圆的对称性研究圆中的圆心角、弧、弦间的关系定理。同时注重培养学生的探索能力和简单的逻辑推理能力。体验数学的生活性、趣味性,激发他们的学习兴趣。

  (1)情景引入中运用媒体形象直观的展现了折扇中蕴涵的圆心角、弧、弦之间的关系,激发学生的学习兴趣,并让学生体会到数学来源于生活。

  (2)在探究圆的旋转不变性和探究圆心角、弧、弦之间的关系定理时,教师应用白板的旋转功能让学生观察——猜想——证明——归纳的数学过程,让学生既轻松又形象直观地获得了新知。

  (3)在应用提高过程中,运用白板的链接功能把枯燥无味的数学问题用学生喜爱的三国任务链接起来,让数学也充满了趣味性,同时大大提高了课堂效率。

  总的来说,本节课中白板的使用既大大提高了课堂效率,又把数学的课堂变成了生活的课堂,学生探究的课堂,让学生体验到数学的美。

  九年级圆教学反思6

  由于本节圆与圆的位置关系是新课,这节课的内容与“直线和圆的位置关系”有密切的联系,但这节课的两圆位置关系远比直线与圆的位置关系复杂。因此,我通过实例引入和让学生动手操作类比直线与圆的位置关系,猜测两圆可能存在的位置关系,然后经过讨论,归纳确定两圆位置关系的各种情况。在与两圆位置关系相应的三量的数量关系的研究中,鉴于学生已有直线与圆的位置关系中两量(半径、圆心到直线的距离)的数量关系的认知基础,就只运用了类比迁移的方法。这些方法的运用,都是为了充分发挥学生在探求新知过程中的主体作用。

  上完这堂课有几个值得反思的问题:

  1、设计思路。我在开始思考设计这个课题时,并不是很有把握。圆与圆的位置关系在教材中不如之前直线与圆位置关系的应用性广,有关它的题型受教学要求的局限,使教学设计增加了难度,但是运用已学的直线与圆的位置关系,用类比的方法去处理圆与圆的位置关系又是一个很好的材料,所以我采用了类比的思想,让学生自主探讨出圆与圆位置关系的判断方法,这也比再次独立研究圆与圆位置关系大大地缩短了时间,为后面节省了时间,这种思路是否可行?

  2、时间把握。课前复习是有必要的,是为了学生类比旧知识,联想新知识,但复习旧知识的时间应该限定在三分钟以内,复习时间长会导致巩固练习的时间不足和问题展开不够充分。

  3、限时训练。限时训练的目的是为了让学生更有效率地做题,限定时间过长或是过短都不利于学生提高数学能力,这点还有待研究。

  九年级圆教学反思7

  本单元内容是在学生学过了直线图形的认识和面积计算的基础上进行教学的,通过对圆的有关知识的学习,可以加深学生对周围事物的理解,提高解决简单实际问题的能力,也为以后学习圆柱、圆锥等知识和绘制简单统计图打下基础。

  通过本单元的实际教学和学生的学习反馈情况来看,完成了预设的教学内容。在本单元教学过程中的体会和感受,让我有了很多思考和收获。

  一、多让学生动手画,进一步加深对圆的认识

  由于学生是初次使用圆规,所以通常画出的圆的线条不够光滑。多让学生动手画,才能让学生更快、更熟练地掌握圆的画法。但是,如果只是单纯的要求学生画圆,会比较枯燥,不利于发展学生的数学学习兴趣。因此,布置学生以圆为基本图形,设计美丽图案的作业。这次作业不仅让学生熟练掌握了圆的画法,还让学生充分发挥了想象力来构图。学生在多次画圆的过程中也加深了对圆的认识,有利于对圆的特征的掌握。

  二、进一步深化学生的转化思想

  前面学习过的平行四边形、三角形、梯形的面积计算公式的得出,都是运用转化的思想把图形转化成会求面积的图形。而本单元的圆的面积计算公式的推导,仍要运用到这一重要的数学思想。这节课的教学中,我在启发学生可以用转化的思想求出圆的面积后,把进一步探索转化方法的机会留给了学生。通过动手、动脑、动口,使多种感官参与进来。借助课件使学生直观感受到当把圆均分成无穷大的等份时,我们拼成的近似平行四边形就变成了一个长方形,初步体会从量变到质变的过程,感受转化思想的作用。

  三、进一步培养学生的逆向思维能力

  学生通常习惯于顺向思维而形成一种思维定势,不习惯于逆向思维,思维缺乏灵活性。因此,加强逆向思维对学好数学,激发学生学习兴趣都有重要作用。这个单元的逆向思维的运用主要体现在对计算公式的逆向运用上。例如,已知圆的周长,求圆的.面积。这种题目需要先求出圆的半径。已知圆的周长求半径,就需要逆向使用计算公式C=2∏r。对逆向思维能力不强的学生来说,把计算公式做为等量关系式,列方程解答,可以减小逆向思维的难度,顺利解出这类逆向思维的题。对于逆向思维能力较强的人,可以直接由计算公式C=2∏r,得到逆向变换后的计算式子r=C÷2÷∏或r=C÷(2×∏)。利用好这些题型,可以让学生的逆向思维能力得到发展。

  四、让学生熟练使用计算公式解决简单的实际问题

  本单元的教学目标不仅仅是让学生掌握有关圆的计算公式,更重要的是让学生能够灵活运用所学的计算公式来解决实际生活中的一些简单的问题。让学生在解决实际问题的分析、比较中更进一步加深对知识的理解。例如,“有一个半径为3米的圆形喷水池,它的外面紧围着一条宽为2米的环形花带。这条环形花带的面积是多少平方米?”这是一个实际生活中的问题。解决这道题,首先需要把实际的场景抽象成一个数学模型——环形。之后,只需要学生运用求环形面积的知识来解决这个问题了。

  五、几点困惑

  首先是关于计算的问题。新课标实施以后,对于计算技能要求降低了很多,学生的计算能力也显著下降。在计算圆的面积时,学生费时费力且错误百出。例如学生在完成作业本上关于圆环这一课时作业时,几乎都在半小时以上,而且计算全部正确的屈指可数。我们是该选择较简单的数据降低计算难度还是恶补计算提高计算正确率?

  其次,在这个单元的教学中,每一个看似简单的知识点后面,其实都蕴含着丰富的教育教学资源,所要补充教学的内容实在很多。怎样在有限的教学时间里达到最优的教学效果所需的思考太多太多(我校4位老师几乎用了近3周的时间教学这一单元,按计划8到10课时完成)。

  九年级圆教学反思8

  教学是数学活动的教学,是师生之间交往、学生之间交往互动与共同发展的过程。有效的数学学习活动不能单纯依赖模仿与记忆。好的数学教学应该从学习者的生活经验和已有知识的背景出发,提供给学生充分进行数学活动和交流的机会,使他们在自主探索的过程中真正理解和掌握数学知识。从某种意义上说,学生怎样投入数学学习,甚至比学习何种数学知识更重要。为了给学生创设更大的发展空间,我在教材的呈现方式和学生的学习方式上,注意为学生提供“做”数学的机会,让学生在各种活动中体验数学和经历数学。根据教学的需要对教材进行适当的加工和处理,从学生的实际出发,按照学生的年龄特点和认知规律设计教学活动,鼓励每一个学生动手、动口、动脑,积极参与数学的学习过程。

  在本节课的学习中,首先从公共点的角度认识“圆与圆的位置关系”,接着在“相离”、“相切”的问题上出现了思维阻力,最后在老师的引导和多媒体动画中体验确切的“圆与圆的位置关系”,让学生在活动中充分发展,畅所欲言,各抒己见,既把握了知识的本质,学到了探究方法,又提高了合作、交流的能力。

  九年级圆教学反思9

  本节课成功之处有以下几点:

  1、让学生的数学学习贴近生活。

  数学来源于生活,并用于生活。初中数学,虽然知识越来越抽象,但是只要我们用心发现,还是可以找到现实生活中的素材。作为一名数学教师,要让学生体会他们学习的是有意义的数学,这些知识是与生活息息相关的,从而激起学生学习数学的兴趣。

  在本节课的开头,利用多媒体课件展示生活中的圆形,学生在享受数学美的同时也深切地感受到生活离不开圆,体会到学习圆的重要性。虽然小学阶段学生已经对圆的有关知识有所了解,但只是一种感性认识,知道一个图形是圆,还没有抽象出“平面上到定点的距离等于定长的所有点组成的圆形叫做圆”的概念。本节课主要是让学生通过观察,把圆与车轮作类比,结合圆规画圆,得出圆的本质特点“圆周上的点到圆心的距离处处相等”后,就容易归纳出圆的定义。点和圆的位置关系也可以从生活中找到原型。已投射的飞镖和靶的位置关系就是一个很好的例子,它是学生既熟悉又比较感兴趣的事物。例1的应用更让学生体会生活中有数学,数学是解决实际问题的工具。

  总而言之,本节课确实让学生感到学习数学也就是关注生活,只不过给生活中的这些现象以新的说法。所以抽象的数学也就显得简单了,学生也就更加喜欢学数学了。

  2、改变了学习方式。

  《新课标》指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与交流合作是学生学习数学的重要方式。”为此,我在课堂中给学生动手操作的机会,让每位学生用圆规在本子上画圆,同时要求他们动脑,动口,通过画圆过程体会圆的特点,以便于归纳圆的概念。让四位学生分两组合作在黑板上画圆,还让他们谈谈合作成功的经验(一位一定要固定好圆心,另一位一定要拉紧绳子的另一端粉笔头在黑板上绕一周)。所以得出确定圆需要两个要素即圆心和半径。在必要时,教师也让学生小组合作互相讨论,充分利用集体的智慧,使之能够解决较难的问题。

  3、问题设计符合学生的认知规律。

  从情境动画片中的车轮到为什么车轮要做成圆形,圆形车轮有什么特点把

  圆与车轮作类比有什么相似之处……,这些问题的设计非常连贯,学生也很主动地围绕“问题串”思考,自然地得出了圆的概念,解决了本节课的难点。再是例1的具体应用,再次让学生体验数学来源于生活并用于生活。

  九年级圆教学反思10

  本节课学生对垂径定理都很好的掌握,亮点在于练习设计有梯度,本节例题学生掌握很好。哲人说,但凡走过,必留下痕迹。那么我们的数学课堂又该给学生留下些什么呢?

  北京师范大学数学科学学院曹一鸣教授这样评价一堂有价值的课:“一堂有价值的数学课,给予学生的影响应该是多元而立体的。有知识的丰厚、技能的纯熟,更有方法的领悟、思想的启迪、精神的熏陶。”数学就是数学,简洁、抽象、严密是数学学科的本质,也是她美之所在,这也是她能如此吸引人的重要原因。

  教学中,应始终坚持以人为本的教育理念,抓住数学学科的本质教学数学。本节课首先应留给学生的“轴对称图形和成轴对称”这一严谨的、合情合理的知识,同时还要让学生很好地体验数学源于生活、服务于生活,感受数学的奥妙,领悟数学学习的方法,学会数学地思考,学会用数学的思想和方法解决实际问题。总之,这次课堂展示活动活动使我更清醒地认识到:

  一、能激活学生的数学思维的问题才是好问题。

  我们不仅要努力精心设计这样的好问题,同时还要以这种良好的数学素养潜移默化地影响每一个学生,引导学生善于发现并提出问题,发展问题意识;

  二、借助于各种恰当的教学手段。

  通过观察、猜想、验证、实验、交流、推理等数学活动形式,引领学生从视觉、听觉、触觉、思维等全方位参与数学研究活动,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学本质理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展,这样的课才是好课。

  九年级圆教学反思11

  随着课程改革的不断推进,教师的教学方式也在发生着深刻的变化,传统的教学模式已逐渐被广大教师所摈弃,取而代之的是以学生为主体,关注师生情感互动的“主体性教学”模式。数学课堂教学要作为一种活动过程来进行,必须自始至终要有学生参与的机会,不断满足学生的探索欲望,并及时给学生创设问题情景,提供探索指导,使学生在探索新知的过程中,经历与前人发现这些知识时大体相同的智力活动,真正使学生在长知识的同时又长了智慧。

  案例1在教《多边形的内角和》时,教师不是简单地告诉学生多边形内角和的计算公式,而是把形式结论的思维过程贯穿于教学活动中。因此,教师设计了如下的问题。

  1、四边形、五边形、六边形、七边形的顶点A作对角线,可把多边形分成若干个三角形?

  2、A点与哪几点不能再添辅助线构成三角形?

  3、分成三角形的个数与多边形的边数有什么关系?

  4、n边形从某一顶点作对角线可构成几个三角形?内角和怎样求?为什么?

  5、你能得出多边形内角和的公式吗?

  让学生通过观察、思考、讨论、交流,积极思维,主动获取了知识,同时也提高了探索能力。在教学过程中,根据教材的内在联系,利用学生已有的基础知识,引导学生主动参与探求新知,发现新规律。这对学生加深理解旧知识、掌握新知识、培养学习能力是十分有效的。

  课堂教学是一个富于变化的过程,记得一位教师在讲解“圆是到定点的距离等于定长的所有点的集合”时,学生对一个图形可以看作是符合某个条件的点的集合所要求的两点要求理解并不十分深刻,反复举出角平分线、线段垂直平分线等集合来说明,学生还是似懂非懂。这时,提出了如下问题:

  师:同学们,现在教室里可以看作是全体同学的集合吗?

  学生一愣,但马上笑着回答:不是,您不符合条件。

  教师拉起前排一位同学一起走出教室,再一次让学生理解“教室里是否可以看作全体同学的集合”这一要求。教师精心设计并出其不意打破了正常学习状态,激发学生的思维进入活跃状态,加深了对教学内容的理解,收到了良好的效果。

  案例2假设有若干杯甜度(浓度)相同的糖水,经过以下操作后糖水的甜度(浓度)是否改变?

  1、将所有糖水到在一起;

  2、将任意多杯糖水到在一起。

  问题提出后(稍后),学生几乎异口同声地说:“不变”。

  教师肯定了学生的说法后,又给出了一个问题:若将a/b、c/d……m/n均视为到前糖水的浓度,且分子为糖的质量,分母为糖水的质量,则它们有何关系?

  生:a/b=c/d=……=m/n

  师:那么到后糖水的甜度呢?

  生:(a+c+……+m)/(b+d+……+n)

  师:两式有怎样的因果关系?

  生;若a/b=c/d=……=m/n则(a+c+……+m)/(b+d+……+n)=a/b

  师:若a、b、c、d……m、n是单纯的数字,那么上式一定成立吗?

  生:(沉默,欲言又止,处于困惑中)

  师:凭以上的直觉与我们的勇气,猜测一下可否?

  组织学生展开讨论,课堂气氛活跃,达到见仁见智,最后得到完整的等比性质。让学生亲历了定理的发生、发展过程,为其顺利掌握知识结构奠定了良好的直观思维基础。知识是不能传递的,教师传递的是信息,只有通过学生的主动建构,信息才能变成其认知结构的知识,教师要想方设法在教学的各

  个环节,促使学生主动学习、积极思考,最大限度地激发学生的学习兴趣,这是学生能够主动建构知识的前提。同时也培养了学生的合情推理能力与逻辑思维能力。

  可是在实际操作过程中,我们还可看到另一种现象:在教师和学生、学生和学生交往互动的活动中,教师为了体现学生为主体,合作讨论似乎成了教学过程的必经之路。讲究合作没有错,关键是讨论的问题、方法和教师课堂处理方面有值得商榷之处颇多。

  如教师在组织探究活动时,学生的讨论刚刚开始就被教师打断,然后教师详细讲解探究步骤和方法,讲述自己的心得体会;或教师详细讲解探究理论,说明注意事项,一堂课足足将了三十多分钟,还几分钟时间让学生再讨论、再探究,走过场了事,让我们看下例:

  案例3(某数学公开课正在进行中,一学生提出一个问题……)

  师:(兴高采烈地)这位同学很会动脑筋,请四人小组讨论这个问题。

  学生高兴地自觉分组,情绪高涨,讨论积极,不到2分钟。

  师:(不停拍手,作手势)停一停!停!谁来汇报刚才小组讨论的情况。

  学生鸦雀无声,无人举手。

  还有当一些学生未能及时回答,便马上找优秀生代替。这些现象在公开课、研究课中经常出现。让学生合作学习适合学生的学习特点,有利于激发学生的创造力,促进师生、生生之间的对话与交流。对数学来讲,想象的空间是广阔的,思维是开放的,在教学中,应多些耐心,不要让课堂成为教师和优秀生的独白,变成教师执行教案的生硬的操作。

  归结起来,教学中出现这种紧急“刹车”往往有以下几种原因:

  1、形式主义。新课程背景下,学生的学习怎能没有合作学习呢?不然,课怎么评?“假合作”也是“合作”。有比没有强。

  2、教师的思维定势。老师觉得学生智力不佳,学习成绩不理想,定然说不出所以然,不会是什么好答案。

  3、教师觉得自己课时紧,等学生讨论、回答,回耽搁教学时间,甚至打断教学思路,弄不好还会完不了教学任务。

  在新课改中,我们既要坚决改变“独霸课堂”的习惯,又要反对搞形式,谈“讲”色变。我们不能从一个极端走向一个极端,而应从教育规律和学生身心发展的规律出发,好好研究“讲”,正确把握“讲”的作用,既要发挥教师的主导作用,也要发挥学生的主体作用。