这是学生第一次接触小数乘法,我大胆改变教材没有使用课本上的情景图,安排了复习积变化的规律,透过例1,让学生在解决实际问题的过程中掌握小数乘整数的计算方法,之后安排了一些练习巩固。而在实际的学情中,有大部分学生都会算小数乘法,明白当成整数计算,然后点上小数点,但对于为什么要这么算,竖式的写法还很模糊这一现象,我想如果按照教材的编排进行,这样的问题没有挑战性,学生不会感兴趣,于是从以下几个方面安排:
1、突出积变化的规律
在教材中积变化的规律是复习,我在教学中却将当它是新知,引导学生发现规律,体验发现的乐趣。充分理解一个因数不变,另一个因数扩大(缩小)多少倍,积就会扩大(缩小)相同的倍数。引导学生直接运用这个规律计算出0.3×2,同时运用小数乘整数的好处进行验证,感受规律的正确性。
2、突出竖式的书写格式。
有了前应对算理的理解,当遇到用竖式计算3.85×59时,学生不再感到困难,但要他们说出为什么这么写,部分孩子还是不能理解,所以我抓住小数点为什么不对齐了引导学生思考,我们已经将3.85扩大100倍,计算的是385乘59了,所以根据整数乘法的计算方法计算,而不是小数乘法了,最后还得将积缩小100倍。
3、突出小数的位数的变化。
小数位数的变化是本节课的一个难点,因此我为这个安排了两个练习,一个是推算小数的位数,二是决定小数的位数,在决定小数的位数后选取了两题让学生计算,认识到并不是积的小数的位数和因数的小数位数都是一样的。
在整节课的学习中,学生开始对学习充满兴趣,用心的思考,运用发现的规律去解决问题,能正确计算小数乘整数,而让我觉得困惑的是,在前面这一部分我让学生发现规律,运用规律去口算,然后去笔算,一切都在我的安排之中,教学的过程是流畅的,顺利的引导学生进行知识的迁移和扩展,学生掌握的状况也是很好的,但过多的暗示是否束缚了学生的思维,如果不铺垫,直接出示小数乘整数的问题让学生思考,对于培养学生的思维潜力是否好些课的下半部分,学生对计算已经不感兴趣了,有几个孩子已经开小差了,事后调查得知,他们觉得问题太简单了,就是积的小数位数的问题,只要移动小数点位置就行了,计算没有什么多大意思。
学生说得是实话,最近学的都是计算,都是讨论计算方法,而计算方法的发现有时不需要让他们经历发现、探究的过程,更多的是老师的提醒和告诉,充满好奇心的孩子怎样喜欢被动的理解呢。看来计算的教学还需要教师将练习的形式变的丰富些,吸引学生的眼球和大脑。
(1)让练习层次化。练习的安排体现了从易到难、由简到繁、从基础到综合的原则,学生经历了一次又一次的挑战。每一位学生都有获得成功学习的机会和体验,并且让学生在生活的情境中发现问题,解决问题,使不同层次的学生通过本节课都有所收获,进而对数学学习产生兴趣。同时注意运算律的推广,运算律的直接运用都面向全体,集体练习,集体讲评,让绝大部分学生都能过关,间接运用展开讨论交流,力争让学生理解方法,掌握拆分、变形的方法,建立保持等式平衡的思想。注意学生思维的拓展,让思维向广度、深度发展。
(2)让练习生活化。借解决生活问题来巩固计算,让计算教学不再是为了计算而计算,而是把它和课程标准中所倡导的生活实际、情感态度相结合,引导学生联系已有的知识经验,开展深入的讨论、交流,相互启发、学习。通过练习对学生进行“爱护环境”的教育,提高学生的环保意识。
2.不足之处:
通过本课复习,学生对小数乘法知识有了系统了解,能较熟练地进行计算小数乘法,但部分同学在把小数乘法看成整数乘法算好后,忘加小数点;或小数点点错位置;或直接写出得数(如2.15×2.1的竖式下直接写出4.515,无计算的过程),做完竖式,不写横式的得数;有的先去零后,再数位数等。针对这些错误,还有待于继续训练。应用小数乘法解决实际问题时,有的学生不能沉下心来审题,做题习惯还要加强培养;在简便运算时,大部分学生能灵活地运用乘法运算定律进行简便计算,但有的学生运用不熟练如(5.4×10.2错写成5.4×100+0.2)还要对这些学生加强训练。虽然学生已经知道小数乘法的意义、算理,也知道积的小数位数是因数位数的和,可实际计算总有出错的现象,还需要继续加强练习;还要注重培养学生计算能力和认真做题的习惯。
透过小数乘法的教学,学生明白了根据积的变化规律,即:先按整数乘法的计算方法得出积,再看两个因数共有几位小数,就从积的右边起数出几位,点上小数点。积的位数不够,要在积前用0补足后再点小数点。
这时有一道决定题引起了不小的争议。这道题是决定“三位小数乘一位小数,积必须是四位小数”。对于这道题,大家众说纷纭,结果理由各不相同。
有的同学认为是对的,意见归纳如下:
书中关于小数乘法计算法则说:“计算小数乘法,先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点”。两个因数一共有4位小数,那么积肯定是四位小数。
有的同学认为是错的,意见归纳如下:
三位小数乘一位小数,如果积的末尾有0,那积就不是四位小数,如0.125×0.8的积本来是0.1000,但因小数末尾的零能够省去,便得到积为0.1,于是就出现了三位小数乘一位小数,积不必须是四位小数的状况!
针对学生出现的不同意见,我先让学生充分发表自己的意见。最后我提醒同学们,数学讲究严密性,处理后的积不能与原先的原始积混为一谈。做1.25×0.08时,我们先用125×8=1000,然后看因数当中一共有4位小数,于是就从积的右面起数出4位点上小数点!
而不是先去零后,再数位数!要注意的是我们在点上积的小数点时就已经确定了一点:积是四位数!虽然为了书写简便,在不影响积的大小的状况下,我们根据小数的性质将小数部分末尾的0省略掉。但省略不等于没有。我们在决定小数乘法的积是几位小数时,要根据小数乘法的计算法则,对原始的积进行决定,所以三位小数乘一位小数,积必须是四位小数。
在教学前,我对学生可能出现的问题预设的不是很充分,本以为学生已经会计算多位数的乘法,只要让学生理解了“积的小数位数是两个因数小数位数之和”后就可以轻而易举的掌握小数乘法计算了,可是教学下来学生练习中出现的情况却让我始料不及。总结起来大致有以下几种:
1、对位问题:初学时,小数乘法的对位也遵守小数加减法的对位方法,造成乘得的积的末尾对位不准。随后,计算小数加减法时按照小数乘法的对位方法,造成不同计算单位相加减的错误。
2、0的.问题:一是在竖式计算过程中,因数中的零也去乘一遍,不会简便了;二是,小数乘整十、整百之类的数,先按整数乘法的方法乘出积后,不把整十、整百数后面的零落下来就点小数点,点上小数点后再添零,随后又根据小数的性质划去。
3、计算上的失误:做题马虎、不仔细。看成整数乘法算好后,忘加小数点;或小数点打错位置;做完竖式,不写横式的得数等。
面对这些情况,我想,如果在课前对学生的知识基础进行一个课前预测,对学生有了充分的把握,课堂的效率会高一些。
今后教学中我要注意:
1、要进一步突出学生的主体地位。这一阶段,教师主导性太强。在学生做题中出现错误时,我总是急于给同学分析做错的情况,而没有让同学自己找找原因。如果让他们先想想小数乘法的法则,然后再跟错题比较一下,这时候有的同学可能自己找出错题的原因,这样才能给学生留下深刻的印象,以至下次做题时不会再犯相同的错误。或者还可以把学生所有的错题的形式集合在一起,让学生自己“会诊”,找出错因。
2、新授前的复习铺垫要充分。如果相关复习不够到位,一方面是不利于学生从旧知上迁移出新知识;另一方面是学生就不能清楚新旧知识间的联系与区别。如果在学习之前,提前让学生作好整数乘法和小数初步认识的复习,而不应该急于按教学计划开课,效果可能会好些,错误会少些。
另外,要把好计算关,在平时的教学中,要多加强口算题的训练,以提高计算正确率,给学生夯实基础。
《小数乘法的计算》是北师大版四年级下册第三单元的内容。小数乘法的计算是在学生掌握了整数乘法计算的基础上进行学习的。教材首先安排了“小数点搬家”,通过这个内容的学习让学生了解小数点位置的移动引起了小数大小的变化。并且掌握了能引起怎样的变化。在此基础上学习小数乘法的计算。
在每节新知教学后的练习中,学生的正确率都不容乐观。造成错误的原因主要有两方面:(1)、计算上的失误:看成整数乘法算好后,忘加小数点;打完竖式,不写横式的得数;计算过程中字迹不清或丢三落四现象。(2)、方法上的错误:不会对位。
面对学生出现的这样那样的错误,使我不得不开始重新审视自己的课堂,审视我的学生,并对此我进行了深刻的反思:
1、加强学生口算能力的培养。《新课程标准》指出:口算既是笔算、估算和间算的基础,也是计算能力的重要组成部分。因此,提高学生口算的正确率以及加强学生口算的速度,对提高学生计算的能力一定会帮助。
2、重视学生的作业习惯培养。我把学生在明白算理后出现的错误,都简单的归罪于“马虎”,其实加强良好作业习惯的培养才是最重要的。良好的习惯不但能一改学生“马虎”的毛病,它还能为学生今后的学习生活带来帮助。它体现在我们平日数学教学的点点滴滴中,需要我们老师的正确引导和激励。
3、指导错题改正。学生在计算出错后,我往往让学生马上去订正。其实可不用急于一时,可以让学生之间互相帮助找出错误,也可通过学生自查来发现错误。
在这一单元的教学中,我还觉得自己思想不够解放,走不出传统教学模式的影子,影响着新课标、新理念的实施。
针对学生出现的这些问题我认真反思了我的教学,也存在一些问题。一是注重了让学生探索小数乘法的计算方法,忽视了计算方法的强化;二是注重了学法指导,只关注了部分学生,忽视了学困生的指导;三是为了为完成任务而完成任务,忽视了学生的巩固练习。计算教学看起来是个很简单的内容,要能让学生很好的掌握也不是一件很容易的事。教师不能忽视学生的想法,学生的任何错误都是有原因的。作为教师要特别关注。针对学生出现的问题对症下药,解决问题。