五年级数学分数乘法教学反思(通用五篇)

张东东

  五年级数学分数乘法教学反思1

  《分数乘法(一)》是分数乘法这一单元的第一课时,主要是结合具体情境,学生在具体操作活动中,探索并理解分数乘整数的意义。同时,探索并掌握分数乘整数的计算方法,能进行正确计算,进而能解决简单的分数乘整数的实际问题,体会数学与生活的密切联系。

  在教学伊始,我直接出示“1个苹果图占整张纸的1/5,3个这样的图形就占整张纸的几分之几?”问题情境,让学生带着问题去思考,并寻找解决问题的策略。有的学生会通过具体图形语言来数一数;有的学生会直接用算式来计算。在黑板上,呈现所有学生的方法,并引导学生找出之间的联系。紧接着,让学生回忆在整数乘法意义的基础上来学习分数乘法意义,便于学生更好地学习,培养知识迁移能力。在探索分数乘整数的计算方法时,学生运用自己的语言来说明计算结果。接着,学生在结合问题、图形进一步体会分数乘整数的计算方法。

  这是一节计算课,看似很简单。可是,从学生的作业反馈情况,并不理想。学生的计算过程虽能正确地写出来,但是在结果上会出现没约分化简。这可能跟自己,在帮助学生理解那两种约分方法所存在的问题。在对比两种约分方法,我是先让学生试着说一说,两种约分方法的不同之处,学生也能说出来。我也做了一个小结:一种是在结果上约分;另一种是在过程上约分。但是,我却忘了让学生体会在过程上约分的优越性与简便性。所以,从学生第一次交上来的作业来看,大部分学生都是在结果上约分,这样就导致部分学生没约到最简、或没约分。仔细地想,自己常常鼓励学生方法多样性,却忽视优化方法。

  五年级数学分数乘法教学反思2

  在备课时一直被如何处理分数乘法意义困惑。后来想一想,如果从数学应用的角度来看,学生只要能从具体的问题中判断两个数据之间存在相乘的关系就可以了,而这个相乘的关系在本单元有了新的拓展,即“求几个相同加数的和”、“求一个数的几倍是多少”和“求一个数的几分之几是多少”。想明白了这一点,回头看看过去的教学,在这方面好像就真的把问题复杂化了。

  本单元的重点有两个:一是乘法意义的拓展及简单的应用,二是分数乘法法则的掌握。从教材整体编排上看,这两个重点是交织在一起的:

  分数乘法(一)通过对具体问题的解决使整数乘法意义迁移到分数乘法,并使学生在解决问题的过程中理解分数乘整数的计算法则,能正确熟练的计算分数乘整数,正确熟练的解决一些简单的实际问题。

  分数乘法(二)通过对具体问题的解决,使乘法的意义得到拓展,认识到“求一个数的几分之几是多少”也用乘法,并能正确地应用之解决实际的问题。

  分数乘法(三)通过对具体问题的解决,进一步巩固“求一个数的几分之几是多少”的乘法意义,并探索和理解分数乘分数的计算法则

  从以上的分析来看分数乘法(一)作为本单元的起始课就有着至关重要的作用。

  在教学中我先放手让学生解决教材上提供的具体问题,在讲评的过程中,有意识的分为两个层次:一是通过沟通不同解决方法之间的联系(图解、加法解、乘法解),将整数乘法迁移到分数乘整数,二是运用分数乘整数的意义解释计算的地过程,使学生理解计算的道理,初步感知挖掘数学概念本身方法的重要性。“涂一涂、算一算”的重点放在“涂”上,使学生巩固意义,同时通过以形论数理解计算的道理。试一试的重点则在分数乘整数计算法则的总结。这节课的教学过程概括起来:以分数乘整数的意义为起点,以分数乘整数的法则为归宿。

  五年级数学分数乘法教学反思3

  在本节课的教学中,我以折纸涂色活动为主线,给学生提供了大量的动手操作的时间和观察交流,思考的空间,鼓励学生独立思考,从不同的角度去探究问题。探索并掌握分数乘分数的计算方法,并能够正确计算,还要能运用分数乘分数的知识解决简单的实际问题。我还重视将操作过程、文字语言、图形语言和符号语言的结合,相辅相成,鼓励学生讨论如何折纸表示3/41/4及其结果,这样不仅解释了符号语言的意义,也直观形象地展示了3/41/4的计算方法,使学生在折纸过程中,充分体会到分数乘分数的意义,感受计算分数乘分数时为什么是分子乘分子,分母乘分母的道理。满足了学生多样化的学习需求。

  在分数乘法(二)中我结合教材和课程标准的需求,首先向孩子们提出并应用了数形结合的方法。例如在引入中:把一张长方形的纸对折一次,用斜线涂出它的 1/2,然后对其再对折第二次,用红色涂出斜线部分的1/2,请你说一说红色部分占整张纸的几分之几。从学生的反馈来看,能够直观得从图中看出网格部分所占几分之几,但是学生很难列出乘法算式。(14的`比较多)。说明学生不能够充分理解两次做为单位1的量。两次折纸中有两个单位1,比如第一次的1份占整个图形的1/2,此时的单位1是1,但是网格部分却占斜线部分的1/2,此时的单位1是1/2,也就是说网格部分对于整个长方形来说是1/4,这其间隐含着两个不同的单位1。在此说明,学生对于分数的意义掌握还不牢固。又例如在验证分数乘法法则的过程中,让学生通过折纸的方式来理解。

  其次,本课我力图让学生亲自经历学习过程。即让学生在动手操作探究算法举例验证交流评价法则统整等一系列活动中经历分数乘分数计算法则的形成过程。这里关注了让学生自己去做、去悟、去经历、去体验,去创造,同时也关注了学生解题策略的自主选择,关注了合作意识的培养。在教学的整体设计上是由特殊(分子位1分数相乘)去引发学生的猜想,再来举例验证、然后归纳概括,力图让学生体会从特殊到一般的不完全归纳思想。首先让学生通过活动概括得出分数乘分数只要分子相乘,分母相乘的计算方法,再由学生自己用折纸、化小数、分数的意义等方法来验证这种计算方法。但是对于折纸的验证方法,有个别学生还是很难理解,允许他们用小数的方法来验证,但这种方法只适用与能够化成有限小数的分数,因此在出现不能转化为有限小数的分数相乘时,这些学生就只能听同学发言,没有自己的思考过程了。所以,如何面对学生的差异,促使学生人人能在原有的基础上得到不同的发展,还是课堂教学中值得探索的一个问题。

  把握好教材是基础,处理好生成与预设是关键,这是我上完了这节课后最大的收获。

  不足之处:

  1、由于我对新课程教材的理解不够深刻,在学生涂一涂理解分数乘法算理时,出现了三种不同的图示方法,而我只认同自己头脑中预设的那种,这样显然是不够的,数学学习的方法是多样性的,学习结果的呈现也是多样性的,开放性的。

  2、教学中,过分依赖于课前的预设,丢失课堂中及时生成的教学资源,错过了挖掘课堂中学生的内因动态的生成,没有创造条件促使内因向提高数学素养的方向转化。

  在今后的教学中,应多学习教育理论知识,强化学科知识,深刻领会教材,用好教材,处理好教材,把握好生成与预设的关系,提高自己的课堂应变能力,不断提高自己的业务水平。这样才会使学生学会数学、热爱数学。

  五年级数学分数乘法教学反思4

  分数乘法应用题涉及到了单位“1”的判断,而单位“1”的正确判断与较复杂的分数乘法应用题的解答息息相关。学生在接触到两种结构分数应用题,很容易把单位“1”搞混淆,出错也是经常的事,在突破这个难点的问题上,我采用的方法是统一两种结构的分数应用题,教会学生找单位“1”,利用画线图和列数量关系的手段去解决问题,取得了不错的效果。下面具体谈谈是如何突破难点,有效的将两种结构的分数应用题统一起来的。

  首先,“求一个数的几分之几是多少”这种结构往往比较简单,从学生的练习来看,学生掌握比较好,班上有大部分学生都能在没有教师的指导下完成,但少部分同学面对应用题这种形式,具有胆怯心理,所以我从分数乘分数的意义入手,在新课的复习引入的环节让全班学生完成相应的文字题,学生容易入境,然后放开手让学生以小组形式展开对应用题的探究,并让完成较好的学生说说自己是怎样想的,全班共同交流,共同得出单位“1”,以及分数所表示的是“倍数关系”,并且结合线段图的方式,引导这个分数所对应的量,通过比、画、找的方式让学生自主发现这种类型的应用题和分数乘分数所表达的意义一样,另配合相应的练习,帮助学困生较好地掌握该类型。

  其次,在解决“比一个数多(少)几分之几”这种结构问题时,我选择的方法是通过判断句子“比一个数多(少)几分之几”中多或少了谁的几分之几?这个句子从语文的角度来看,其实它是一个省略句,省略的正是多或少了“一个数”的几分之几,这里所指的“一个数”其实就是前面所提到的“一个数”,如果在这样一个短句中出些两个“一个数”就会重复啰嗦,通过这样的讲解,学生很容易找到单位“1”,从而这种结构和第一种结构很好地结合在一起,再通过画线段及列数量关系的方法,分析对应量及所求量的关系,学生比较轻松的掌握此种类型,从反馈的结果来看,学生在判断单位“1”不容易混淆,这种讲解的方法的效果比较好。

  五年级数学分数乘法教学反思5

  本课是在学生学习了分数乘法单元中简单的求一个数的几分之几是多少的分数乘法应用题的基础上教学的。这一类实际问题比基本的求一个数的几分之几是多少的应用题的数量关系稍复杂,题目所求的数量不是已知的分率所对应的数量,而是与这个分率有关的另一个数量,所以它是基本的分数乘法解决问题的发展。因此在教学中就要引导学生抓住关键句,找出解题的数量关系式。

  下面就谈谈我就本课教学之后的一些想法:

  (一)精心设计复习题

  从观察线段图入手,让学生说说从图上可以知道些什么,再让他们通过比较,选出有用的条件自己编题、解答。在这一过程中,训练了学生观察和分析线段图的能力,同时,通过选择有用的条件进行编题,不仅使学生的思维能力得到强化,也让他们在数学学习上获得一种满足感,调动学习的积极性。再通过分析自己的算式,说出题目中的单位“1”和算式所运用的数量关系,使学生的知识得以巩固,也为后面学习例1作了很好的铺垫。

  (二)注意语言表述形式的转换,帮助学生理解关键句和数量关系

  “学校花坛里有84棵花,其中1/6是月季花,月季花有多少棵?”这一类问题由于可以直接利用一个数乘分数的意义来进行列式,学生比较容易掌握。但是形如“一种毛衣,原价56元,现在的价钱降低了2/7。降低了多少元?”这样的问题,就其表述形式而言与一个数乘分数的意义有一定的距离,学生理解时有一定的困难。因此在本课的练习中我加强了语言的转换练习,让学生用“谁是谁的几分之几”的句式来表述“皮球的个数比足球多2/5、实际用水量比计划节约1/9、实际产量增加2/7、梨树的棵数比桃树少1/4”这一些句子,学生在表述的过程中自然体会到了各个分数的意义,对于单位“1”的理解愈加到位,对分率与分率的对应量理解到位。从课的实施来看,效果还是挺不错的。

  (三)注意操作,通过操作理解分数的意义,感悟数量关系

  有关分数实际问题的解答,我觉得理解已知条件中分数的意义(也就是我们通常说的关键句),在此基础上写出数量关系式应该是解决这一类问题的关键所在。怎样突出这一关键点,我想安排一节补充课时,让学生根据关键句画图,通过物的操作活动透彻理解分数的意义,并写出多个数量关系我认为很有必要。这也是整个有关分数的实际问题解答的奠基工程,应该在我们的教学中得到足够的重视,并应在平时的教学中反复练习,我想这对于后续的教学大有裨益。

  (四)让学生的思维在相互的交流与教师的提问中得到训练

  在教学新课的过程中,先让学生通过比较,找出例题与复习题的相同与不同之处,接着再自己尝试解答。学生解答的时候,感觉做起来很得心应手,三下两下就做好了,而且有些学生用75+75×4/5做,也有一些用75×(1+4/5)做。此时,我先让同桌间相互交流想法说说自己为什么要这么做,每一步表示的是什么意思……仔细观察一下学生,发现他们都很愿意把自己的想法告诉同桌,有些同桌做的方法一样,俩人都争着要先讲;有些用的方法不一样,俩人就一起在研究、比较。在初步的交流后,再进行全班反馈。

  由于刚才练习过,学生说起来还算流畅,如分析75×表示的是什么?后面为什么还要用75+75×4/5,运用的是哪个数量关系?第二种解法中1+4/5又表示什么?为什么要先求1+4/5,最后为什么要用乘法来算时,学生基本能答到点上。这一过程让学生感受到解答应用题,不仅要会解答,更要会分析。

  当然,虽然在教学中考虑得比较全面,但仍存在着不少问题:

  1、形式比较单一

  课上除了老师问学生答之外,小组合作形式也比较单一:学生相互交流说想法、同桌讨论等,几次一来,老师和学生都感觉单调无味。因此,在平时,除了采取同桌合作、小组合作之外,我们还可以根据教学内容,适当地采取学生与教师合作或学生与电脑合作等,让学生在丰富的合作中感受学习数学的乐趣。同时,在组织学生进行合作之前,应给学生留出独立思考的时间,在此基础上的合作学习才有意义,才会让学生在合作学习中发表出自己的观点

  2、与生活的联系太少

  在教学中,教师应多联系实际,培养学生的应用意识,特别是本节课,学习的是“稍复杂的分数应用题”,也就是要求学生“解决实际问题”,但在实际教学中,给学生的感觉只是在一味地做题目,而不是在运用课上所学的知识去解决一些实际问题。此时,如果出示和学生生活学习相联系的题目,如:我们班有54人,其中男生占了,女生有多少人?学生的积极性一定会有所提高。总之,教师要善于从学生地生活实际入手,抽象得出数学知识,再回到实际生活中加以运用,不论在教学活动的哪个环节,都注意与现实生活紧密联系,使学生真正切切感受到生活中有数学,生活中处处需要数学。