本节课我从较简单的问题入手,让学生尝试解决,熟悉此类题型的一般思路,再让学生以填表的方式初步体验鸡兔同笼情况下两种动物的只数和脚的数量之间的关系,同时探索随着鸡兔只数的变化,脚的数量也跟着变化的规律。
通过展开小组讨论,引导学生从体验鸡兔同笼中鸡兔的头数和脚的只数关系到用“假设法”和列方程解的方法经历探究过程,此环节是本课的重点,学生从体验、尝试到此处的讨论、汇报,个人或集体的智慧在这里得到展现,方程解、算术解对于大部分学生来说至少有一种方法是他自己理解或掌握的。
但是,可能是由于我课前准备不够充分,或者驾驭课堂的能力有限,在学生汇报的过程中没有做到机敏地倾听和机智地诱导,对于学生的列式没有指明理由,因此感觉学生在全班交流的过程中出现不能理解的情况。我觉得可能是在处理鸡兔只数和脚的数量变化规律的推导过程时,我直接让学生通过表格的形式进行观察,并没有引导学生到比较实际的方向上。如果我能插入具体的鸡和兔的只数变化时的动态图像,学生应该能更加直观的体会到其中的规律,那么对后面的教学展开将易如反掌。
由于此处设计的失误,导致后面的方程解的方法时间不够,课堂巩固练习也没能很好的展开。我想这也可能是我在设计教案时并没有准确考虑到学生自身的实际认知水平,本课内容安排过多。如果下次再次教学鸡兔同笼,我想我会把假设法和列方程解的方法分成两个课时,争取让大部分学生都能从多角度思考,运用多种方法来解题。
这节课上完后,自我感觉不够理想,有些设计不够好,更有一些细节未加重视,还有就是教师的基本功太弱。但在设计上还是有一定优势的,主要体现在以下几点:
1、在课始,我开门见山的引出本节课要研究的主题“鸡兔同笼”问题;然后以一个数据比较小的鸡兔同笼问题,来引导学生,经历列表法,探讨假设法和方程法等多种解题策略和方法,并加以多媒体课件的展示,帮助学生比较直观形象的理解解题方法,从而更好的突出本节课的重点。
2、由于“鸡兔同笼”问题在小学五年级时出现过,也有小部分学生可能在数奥书上见过,会做。大部分学生不是很会做,因此在备课时我充分考虑到这个情况,所以在教学本课的重难点用假设法解答“鸡兔同笼”问题的第一部分假设全是鸡时以老师引导进学生行分析,加以课件演示,帮助学生理解这种方法。
然后学习假设全是兔时,以学生根据刚才的学习和理解自己独立完成并说明对每步理解,再加以课件演示。通过这两步的学习,大部分学生应该基本能利用假设法来解答“鸡兔同笼”问题。在此基础上教学方程法,主要教给学生找等量关系式,列方程从而让大部分学生能用方程法解决”鸡兔同笼”问题。估计教学时间有些问题。根据教学实际情况进行调整。
3、在这节课上我没有讲古人用的“抬脚法”的方法。这主要是依据学生的接受能力和时间上的考虑,本来这节课讲的方法就很多,特别是假设法学生理解就有困难,再将“抬脚法”讲了,可能学生消化不了,以其都没弄清楚,还不如分成两节课来讲,别外就是时间问题,如果把“抬脚法”讲了,可能学生练习的时间就少了,没办法有效的进行课堂巩固。因此,这节课我没有讲古人用的“抬脚法”。
4、我认为本节课的重难点都应该是在用假设法来解决“鸡兔同笼”问题上,在这部分的设计上,我看了很多资料和课例。都说得较为简单,并有不同的说法。在假设全部都是鸡这里,用26-16=10条腿,这里应该说是“多10条腿”还是“少10条腿”呢,教材上只是简单的说“这样就多出了10只脚”,通过我和我们年级组其他教师的讨论,并看了很多教案和课例,我觉得以假设后的腿与实际比学生较容易理解,当说到这个问题时可以直接说“比实际少了10条腿,为什么少呢?是把兔当成鸡算了,”这里是把兔假设成了鸡,肯定应该是少算10条腿。如果说成“多10条腿,为什么多呢?”就不好给学生解释了。这样也便于同前面的把一只兔当成一只鸡算就少2条腿联系起来。
本节课欠缺的地方:
1、在列表观察腿数变化时,在全是兔或全是鸡时,腿与实际相比为什么会有这样的变化,学生似乎不能很好的说出。反思了下,也是我设计时的一个弊端,没有给学生一个阶梯,跳跃太大,导致后面学生对为什么除以2一知半解。蔡老师给了我一个建议,可以在列表的基础上画图。全部画成鸡,腿16条,一只鸡变为一只兔,腿增加2条,接着再变。让学生通过形象的展示更加清楚腿数变化的真正原因。
2、还有一点比较重要的是计算完验算的过程在上课时被我忘掉了,虽然在课上我也引导他们观察,假设全是鸡先算出的是什么,全是兔是先算出是什么,但学生还是会马虎的,会计算错误,或鸡兔数量弄错因此很多学生会把鸡兔的数量弄错,验算很关键。
3、上课时,为体现方法多样,想着简单让学生了解下方程思想,实践之后发现完全可以把这块去掉,一者学生没有提出,二者在教授假设法时时间不够充裕。
“鸡兔同笼”问题最早出现在我国古代一本数学著作《孙子算经》中,虽历经1500多年,该问题解决办法有多种,是它魅力所在,所以一直是人们津津乐道的有趣的问题。四年级学生学习主要是用假设法解答,而列表法是假设发的基础,单独列表麻烦;抬腿方法作为方法的补充,只作为了解,由于有局限性,用得少。
1、调动学生积极性
课件出示图画鸡兔同笼,引起学生兴趣,感觉好玩,勾起探知的愿望。接着用古文叙述题目,并说明题目的时间是1500年前,现在我们需要帮古人解答问题,学生感到好奇,争强好胜心陡然升起,学习劲头十足。
2、体现方法多样性
为了研究方便,我变换题目数字,把例题改为8只头,26条腿,数字变小好想像。列表法学生推理填写,数字小可以得出答案。
假设法对学生尤其是基础不好的学生来说有难度,学生理解起来很难。我先对列表数字分析、比较,为后面的假设法做好铺垫。我就推荐用中间列表法,发现鸡4只,兔子4只,腿就一共有24条,再进行增加或减少,最后得到了3只鸡,5只兔。学生的速度就加快了。另外,引导学生透过对表格的理解,利用假设法来解决问题。
3、画示意图帮助理解
画图验证:先画8个圆圈表示8个头,再在每个动物下面画两条腿,8只动物只用了16条腿,还多出10条腿,把剩下的10条腿要给其中的几只动物添上呢?(5只动物分别添2条腿)。这5只就是兔子,另外的3只就是鸡。画图的思考过程实际也就是假设方法的思考过程。虽然很难,但我相信,只要学生喜欢了,那么再难的数学题都不是问题了。本节课,在整个课堂中,在问题得到解决的同时学生也体验到了成功的喜悦,感受到数学知识的价值和数学学习的乐趣。
《鸡兔同笼》向学生带给了现实、搞笑、富有挑战性的学习素材,借助我国古代趣题“鸡兔同笼”问题,使学生展开讨论,应用列举法、假设法、方程等方法,从多角度思考,运用多种方法解题,使学生在具体情境中,根据自己的经验,逐步探索不同的方法,找到解决问题的策略,并在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法。
鸡兔同笼问题是一类重要数学问题,在现代生活中随处可见。
(1)三轮车和自行车共7辆,17个轮子。三轮车、自行车各有几辆?
(2)小方有2分、5分硬币共10枚,共有32分。2分、5分硬币各有几枚?
回过头来我们在来看一看《孙子算经》里的这道题:今有鸡兔同笼,上有三十五头,下有九十四足。问鸡、兔各几何?你能拭着做一做吗?
对于我班多数的学生来说,学习《鸡兔同笼》可能会有必须的难度。本节课属于综合应用课,其目的是加强数学知识与现实生活中问题的结合,以提高学生综合应用的潜力。借助“鸡兔同笼”这个载体,初步获得一些数学活动的经验,在活动中引导学生自主探索,用心思考,从中体会出解决问题的一般策略。
在本节课的教学中,我感觉:
1、课堂上,多数学生的用心性还是比较高的。先让学生独立思考或小组讨论,再在全班共同交流评价。学生在民主、和谐的氛围中开拓了思维,到达了运用多种方法解决问题的目的。体现了学生是学习的主人。但部分学生会做却不会表达、不敢表达。口语表达潜力欠佳。
2、课堂上,透过学习,使学生明白了假设的数学思想不仅仅能够解答古代趣题――鸡兔同笼问题,还能解答我们身边的问题。体会到数学就在我们身边。
3、课堂上,注重关注每一个同学的发展,在交流探讨中,鼓励不同学生采用不同的解题方法。效果还不错。
虽然课已经上完,同课异构的教研活动也已经结束,但是我明白我们的教学工作并没有结束,我不能停下前进的脚步,是就应静下心来,好好地自我反思、总结的时候了。
一、对教材的分析要全面、到位,把握内在联系,分清主次轻重。
从一开始对教材的理解,就让我对本课的教学倍感压力,总有个疑惑:有部分学生已经能理解并解释应用假设法来解决问题了,为什么北师大版的.教材却不同人教版的教材一样,提倡教给学生运用假设法、画图法、金鸡独立法、代数法、列表法……等多种方法解题,甚至是要求教师除了列表法以外的方法都不宜补充教学,以免干扰学生思绪。难道教学不就应从学生已有的知识经验水平出发?学生已经掌握的我们还要给硬逼回原点,从零开始吗?
这一连串的疑惑多亏了学校领导和老师们的一语道破,真是一语惊醒梦中人啊!让我重新细细地、全面地解读教材,才明白其实假设法、画图法等与列表法并不是孤立的、互不相干的几部分,而恰恰相反的,假设法、画图法与列表法一样都是在应用假设的数学思想,它们是相互关联的。教材将这一经典、传统的题目“鸡兔同笼”选编为“尝试与猜测”一节,其目的是借助“鸡兔同笼”这个问题作为载体,让学生初步获得一些数学活动的经验,引导学生对一些日常生活中的现象的观察与思考,从而发现一些特殊的规律,体会解决问题的一般策略――列表,即逐一列表法、跳跃列表法和取中列表法。
二、注重思维潜力的培养和数学思想的渗透。
让学生在参与观察、猜想、验证、综合实践等数学活动中,发展合情推理和演绎推理潜力。用数学语言清晰地表达自己的想法是培养学生思维潜力的重要途径。从课初的随意猜想到表格中的有序猜想,从一般验证到表格中数据变化规律的发现,从列表法很快自然联想到画图法、假设法,学生的思维经历了从无序到有序、从特殊到一般、从借鉴到创新、从肤浅到深刻等方面的巨大变化,学生的思维潜力也随之得到了极大的提升。
教师有意识的向学生渗透数学思想和方法。如:用容易探究的小数量替代《孙子算经》原题中的大数量的“替换法”解决问题,渗透了转化的思想和方法;用“列表法”、“画图法”等解决问题,渗透了假设的思想和方法。这些对于学生而言,无疑奠定了可持续发展的坚实基础。
三、注重数学文化的传承。
鸡兔同笼问题是《孙子算经》中一道影响较大的名题,一向流传至日本等国,引起了许多国家的众多数学爱好者的广泛关注。教学中,教师把“数学文化”和《孙子算经》及其中关于鸡兔同笼问题的原题,用课件科学而生动地再现于课堂,极大地激发和调动了学生的探究兴趣,充分地传承和弘扬了经典的数学文化,较好地体现和提升了课堂的教学品味,也让“数学味”萦绕课堂,贯穿课堂始终。
四、真正让学生亲身经历列表、尝试和不断调整的过程,让不同的学生学有不同的数学。
由于学生原有认知水平的不同,存在较大的差异。所以,在同样的列表中,学生的认知水平也有必须的层次。但在教学的过程中,我并没有提出统一的要求,允许不同的学生采用不同的解题方法。在交流时,有些学生用逐一列表的方法,也没去指责他们,而是肯定他们想出的方法有序且不遗漏。再引导学生从上往下看、从下往上看、从左往右看发现规律,体会鸡兔只数变化之间的置换关系。等待学生充分掌握规律,已经跃跃欲试了,教师再指引学生运用自己发现的变化规律在表格中调整验证过程,进行二次调整,快一点找到答案?学生不但能够应用跳跃列表法、取中列表法,来调整过程,而且部分学生已能把跳跃和取中的方法相结合起来列表解决问题。最后引导学生对解题技巧进行归纳与总结:做任何题目的时候,都要先认真思考、分析,根据题目的条件,选取适当的方法,找到解决问题的小窍门!
这样学生在具体的解决问题过程中,他们根据自己的经验,逐步探索不同的方法,找到解决问题的策略;在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法。本来只要求从3道题中任选1道题进行解答,没想到一会功夫,已经一大部分学生把3道题都解答完了,就因为他们在自己亲身经历的调整过程中学会了将取中和跳跃的方法相结合,所以速度之快。这同时也体现了不同的学生在同一节课中都有不同程度的提高,不同的学生学有不同的数学。
五、教师要走进课堂,走进学生的心里,注意捕捉并利用课堂生成的新资源。
这是我教学这一课之前感到有困难的,也是我教学时做得不够到位的地方。比如:学生猜出鸡兔各几只后,有个别学生就开始用口算进行验证。此时,教师的引导让学生感觉需要列表的必要性不够明确。