最近课堂上学习了《解方程》,是以等式的基本性质为基础来解决的。过去在小学教学简易方程,方程变形的依据是加减运算的关系或乘除运算的关系。这实际上是用算数的思路求未知数,但学生到了中学又要另起炉灶,引入等式的基本形式或方程的同解原理来学习解方程。现在,根据《标准(20xx)》的要求,从小学起就引起等式的基本性质,并以此为基础导出解方程的方法。新课程数学教学这样安排体现了“瞻前顾后”的`道理,更加注重知识的迁移和联系,使得小学的知识要与初中的知识更加的接轨。
教材中分为5个例题,分别是不同类型:x±a=b;ax=b;a-x=b;ax+b=c;a(x±b)=c,这几个类型层次依次递进,难度由简到难。其中例1不仅是教授x±a=b类型的解方程,还要让学生理解“方程的解”、“解方程”两个概念。刚开始时学生不易区分,但随着后面例题的讲解,并且在解方程的过程中,学生慢慢理解并内化能区分开这两个概念。
通过几天对解方程的练习,大部分学生对解方程的目的以及检验的方法和步骤都有了较好的掌握,也能分清该利用哪个等式性质来解方程。但是在课堂练习和改作业时,发现部分学生还有一些问题存在:
一、用方程来表示较复杂的数量关系学生出现困难,是通过我的帮助列出方程,应及时让学生巩固方法。
二、对于例3形式的解方程,学生还容易出错,如32-x=45,6÷x=3这样的方程,x前面是“-和÷”,学生不好理解为什么方程两边同时“+x”或同时“×x”,我又借助天平讲解:如果两边同时减32或同时除以6,依然算不出x,如果同时加x或同时×x,然后就能变成x+a=b或ax=b的形式,再利用所学方法进行解方程就可以了。这个类型还需要加强训练,让学生能快速区分开来是加数还是要加一个含有未知数的式子。
三、解方程时学生丢步骤,如:2x+6=18这样的方程,学生都知道第一步要等式两边同时减去6,得到“2x=12”,但这一步有部分学生会直接写成“x=12”,说明还需强调2x是一个整体,第一步解完后并不是最后的解,还需让等式两边同时除以2才能得出。
四、检验时学生的步骤丢三落四较多,或丢掉“=方程右边”;或丢掉最后一句话“x=2是方程的解”。
《简易方程》这单元是本册的重点,解方程又是本单元的一大难点,所以后面的教学时,我除了让学生观察方程中未知数的位置和前面符号来解方程外,还应要求学生说得清,能讲清楚理由,从而在理解变形依据、过程的基础上掌握所学方程的解法。