一、指导思想:
1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。
2.提高空间想像、抽象概括、推理论证、运算求解。
3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
二、教学目标:
(一)情意目标:
(1)通过分析问题的方法的教学,培养学生的学习兴趣。
(2)提供生活背景,通过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。
(3)在探究中体验获得数学规律的艰辛和乐趣,在分组研究合作的学习中学会交流、相互评价,提高学生的合作意识。
(二)能力要求:
(1)通过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。
(2)通过揭示所学内容中的有关概念、公式和图形的对应关系,培养记忆能力。
(3)通过教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。
(4)通过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的滲透和迁移。
(5)利用数形结合,另辟蹊径,提高学生运算能力。
三、教学内容
本学期教学内容有立体几何、解析几何、逻辑知识和圆锥曲线、二元一次不等式(组)与简单的线性规划。
立体几何是研究的是物体的形状、大小与位置关系。通过直观感知、操作确认、思辨论证、等方法认识和探索几何图形及其性质。通过学习,培养和发展学生的空间想象能力、推理论证能力、运用图形语言进行交流的能力以及几何直观能力。
直线和圆是用代数方法研究图形的几何性质,体现了数形结合的重要数学思想。在平面直角坐标系中建立直线和圆的代数方程,运用代数方法研究它们的几何性质及其相互位置关系,并了解空间直角坐标系,体会数形结合的思想,初步形成用代数方法解决几何问题的能力。
二元一次不等式(组)与简单的线性规划问题是不等式的重要应用,也是数学实际应用的重要形式之一。本节要求学生能识别不等式(组)表示的区域,并能根据区域正确地用不等式(组)来表示,能解决简单的实际问题。
常用逻辑包括命题及其关系、充要条件、简单的逻辑联结词和全称量词与存在量词
通过学习使学生理解命题的概念,了解若,则形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系;理解必要条件、充分条件与充要条件的含义;了解逻辑联结词或、且、非的含义;理解全称量词和存在量词的意义、能正确地对含一个量词的命题进行否定。
圆锥曲线研究的对象是椭圆、双曲线、抛物线,使用的方法也是代数方法。这一部分的题目的综合性比较强,它要求学生既能分析图形,又能灵活地进行各种代数式的变形,这对学生能力的要求较高。坐标方法是要求学生掌握的。但是,对学生的要求不能过高,只能以绝大多数学生所能达到的程度为标准。
一、指导思想
在学校、数学组的领导下,严格执行学校的各项教育教学制度和要求,认真完成各项任务,严格执行三规、五严。利用有限的时间,使学生在获得所必须的基本数学知识和技能的同时,在数学能力方面能有所提高, 为20xx年的高考做准备,为学生今后的发展打下坚实的数学基础。
二、教学措施
1、以能力为中心,以基础为依托,调整学生的学习习惯,调动学生学习的积极性,让学生多动手、多动脑,培养学生的运算能力、逻辑思维能力、运用数学思想方法分析问题解决问题的能力。精讲多练,一般地,每一节课让学生练习20分钟左右,充分发挥学生的主体作用。
2、坚持每一个教学内容集体研究,充分发挥备课组集体的力量,精心备好每一节课,努力提高上课效率。调整教学方法,采用新的教学模式。教学基本模式为:
基础练习 典型例题 作业 课后检查
(1)基础练习:一般5道题,主要复习基础知识,基本方法。要求所有的学生都过关,所有的学生都能做完。
(2)典型例题:一般4道题,例1为基础题,要直接运用课前练习的基础知识、基本方法,由学生上台演练。例2思路要广,让有生能想到多种方法,让中等生能想到12种方法,让中下生让能想到1种方法。例3题目要新,能转化为前面的典型类型求解。例4 为综合题,培养学生运用数学思想方法分析问题解决问题的能力。
(3)作业:本节课的基础问题,典型问题及下一节课的`预习题。
(4)课后检查;重点检查改错本及复习资料上的作业。
3、脚踏实地做好落实工作。当日内容,当日消化,加强每天、每月过关练习的检查与落实。坚持每周一周练,每章一章考。通过周练重点突破一些重点、难点,章考试一章的查漏补缺,章考后对一章的不足之处进行重点讲评。
4、周练与章考,切实把握试题的选取,切实把握高考的脉搏,注重基础知识的考查,注重能力的考查,注意思维的层次性(即解法的多样性),适时推出一些新题,加强应用题考察的力度。每一次考试试题坚持集体研究,努力提高考试的效率。
5.注重对所选例题和练习题的把握:
(1)注重对四基五能力的考察把握,贴近课本;
(2)注重学科内容的联系与综合;
(3)注重数学思想方法、通性、通法,淡化特殊技巧;
(4)注重能力立意,以考察学生逻辑思维能力,全面考察能力;
(5)注重考查学生的创新意识和实践能力,设计应用性、探索性的问题;
(6)试题体现层次性、基础性,梯度安排合理,坚持多角度,多层次的考察,有效地检测对数学知识中所蕴含的数学思想和方法掌握的程度.
(7).精心选做基础训练题目,做到不偏、不漏、不怪,即不偏离教材内容和考试说明的范围和要求.不选做那些有孤僻怪诞特点、内容和思路的题目,做到不凭个人喜好选题,不脱离学生学习状况选题,不超越教学基本内容选题,不大量选做难度较大的题目.
6.周密计划合理安排,现数学学科特点,注重知识能力的提高,提升综合解题能力,加强解题教学,使学生在解题探究中提高能力.
7.多从贴近教材、贴近学生、贴近实际角度,选择典型的数学联系生活、生产、环境和科技方面的问题,对学生进行有计划、针对性强的训练,多给学生锻炼各种能力的机会,从而达到提升学生数学综合能力之目的.不脱离基础知识来讲学生的能力,基础扎实的学生不一定能力强.教学中不断地将基础知识运用于数学问题的解决中,努力提高学生的学科综合能力.
三、对自己的要求落实教学的各个环节
1.精心上好每一节课
备课时从实际出发,精心设计每一节课,备课组分工合作,利用集体智慧制作课件,充分应用现代化教育手段为教学服务,提高四十五分钟课堂效率。
2. 严格控制测验,精心制作每一份复习资料和练习
教学中配备资料应要求学生按教学进度完成相应的习题,老师要给予检查和必要的讲评,老师要提前向学生指出不做的题,以免影响学生的学习。三类练习(大练习、限时训练、月考)试题的制作分工落实到每个人(备课组长出月考卷,其他教师出大练习、限时训练卷),并经组长严格把关方可使用. 注重考试质量和试卷分析,定期组织备课组教师进行学情分析,发现问题,寻找对策,及时解决,确保学生的学习积极性不断提高。
3. 做好作业批改和加强辅导工作
我们的工作对象是活生生的对象──学生,这里需要关心、帮助及鼓励。我们要对学生的学习情况做大量的细致工作,批改作业、辅导疑难、及时鼓励等,特别是对已经出现数学学习困难的学生,教我们的辅导更为重要。在教学中,要尽快掌握班上学生的数学学习情况,有针对性地进行辅导工作,不仅要给他们解疑难,还要给他们鼓信心、调动自身的学习积极性,帮助他们树立良好的学习态度,积极主动地去投入学习,变要我学为我要学。
一、指导思想:
以1215课堂教学模式为指引,以学校教导处、教研组、年级部工作计划为指南,加强高二数学备课组教师的教育教学理论学习,更新教学观念,落实教学常规,全面提高学生的数学能力,尤其是提高创新意识和实践能力,为社会培养创造型人才。
二、学情分析及相关措施:
今年高二重新分班后我接了高二(1)和高二(13)一理一文两个班的数学教学,学生程度不是太好而且新来的学生需要适应过程,教学中要从学生的认知水平和实际能力出发,及时纠正不合理学习方法,研究学生的心理特征,做好高二与高一的衔接工作。注重培养学生良好的数学思维方法,良好的学习态度和学习习惯。具体措施如下:
(1)注意研究学生,做好高二与高一学习方法的衔接。
(2)集中精力打好基础,分项突破难点.所列基础知识依据课程标准设计,着眼于基础知识与重点内容,要充分重视基础知识、基本技能、基本方法的教学,为进一步的学习打好坚实的基础,切勿忙于过早的拔高,讲难题。同时应放眼高中教学全局,注意高考命题中的知识要求,能力要求及新趋势,这样才能统筹安排,循序渐进。
(3)培养学生解答考题的能力,通过例题,从形式和内容两方面对所学知识进行能力方面的分析,引导学生了解数学需要哪些能力要求。
(4)让学生通过周月考和单元考试,检测自己的实际应用能力,从而及时总结经验,找出不足,做好充分的准备,用周周练及时的巩固复习所学内容知识点,以及一些常见的题型和方法。
(5)合理利用晚自习的时间抓好尖子生与后进生的辅导工作,分析周周练的作业和课外辅导资料。适当安排时间将高一的重点内容带着学生们复习回顾。
(6)注意运用现代化教学手段辅助数学教学;注意运用投影仪、电脑软件等现代化教学手段辅助教学,提高课堂效率,激发学生学习兴趣。
三、教学进度(草稿):
第1周 | 数学必修2:立体几何 1.1空间几何体的结构 |
第2周 | |
第3周 | |
第4周 | |
第5周 | 2.2直线、平面平行的判定及其性质(1)(2)(3)(4) |
第6周 | 2.3直线、平面垂直的判定及其性质(1)(2)(3)(4) |
第7周 | 2.3直线、平面垂直的判定及其性质(4) 空间点、线、面复习 |
第8周 | 选修2-1:空间向量 第三章3.1空间向量及其运算 |
第9周 | 空间向量及其运算 |
第10周 | 期中考试 |
第11周 | 空间向量 |
第12周 | 1.1命题及其关系 |
第13周 | 1.3简单的逻辑连结词 |
第14周 | |
第15周 | 2.1椭圆(3课时) |
第16周 | 2.2双曲线(2课时) |
第17周 | 2.3抛物线(1课时) |
第18周 | 曲线与方程(2课时) |
第19周 | 总复习 |
第20周 | 期末考试 |