高考数学五大主要解题思路的内容

黄飞

高考数学五大主要解题思路的内容

  导读:数学知识之间都有着千丝万缕的联系,仅仅想凭着对章节的理解就能得到高分的时代已经远去了。所以考生在解答数学试题时要有正确的思路,才能避免错失分数的机会。以下是高考数学解题五大思路,供大家学习参考。

  高考数学解题思想一:函数与方程思想

  函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系(或构造函数)运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程(方程组)或不等式模型(方程、不等式等)去解决问题。利用转化思想我们还可进行函数与方程间的相互转化。

  高考数学解题思想二:数形结合思想

  中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此我们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。

  高考数学解题思想三:特殊与一般的思想

  用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,我们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样精彩。

  高考数学解题思想四:极限思想解题步骤

  极限思想解决问题的一般步骤为:(1)对于所求的未知量,先设法构思一个与它有关的变量;(2)确认这变量通过无限过程的结果就是所求的未知量;(3)构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。

  高考数学解题思想五:分类讨论思想

  我们常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。在分类讨论解题时,要做到标准统一,不重不漏。

  以上就是为大家提供的“2013备考:高考数学五大主要解题思路”希望能对考生产生帮助,更多资料请咨询中考频道。

  抽屉原理与电脑算命

  “电脑算命”看起来挺玄乎,只要你报出自己出生的.年、月、日和性别,一按按键,屏幕上就会出现所谓性格、命运的句子,据说这就是你的“命”。

  其实这充其量不过是一种电脑游戏而已。我们用数学上的抽屉原理很容易说明它的荒谬。

  抽屉原理又称鸽笼原理或狄利克雷原理,它是数学中证明存在性的一种特殊方法。举个最简单的例子,把3个苹果按任意的方式放入两个抽屉中,那么一定有一个抽屉里放有两个或两个以上的苹果。这是因为如果每一个抽屉里最多放有一个苹果 高中历史,那么两个抽屉里最多只放有两个苹果。运用同样的推理可以得到:

  原理1 把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。

  原理2 把多于mn个的物体放到n个抽屉里,则至少有一个抽屉里有m+1个或多于m+l个的物体。

  如果以70年计算,按出生的年、月、日、性别的不同组合数应为70×365×2=51100,我们把它作为“抽屉”数。我国现有人口11亿,我们把它作为“物体”数。由于1.1×=21526×51100+21400,根据原理2,存在21526个以上的人,尽管他们的出身、经历、天资、机遇各不相同,但他们却具有完全相同的“命”,这真是荒谬绝伦!

  在我国古代,早就有人懂得用抽屉原理来揭露生辰八字之谬。如清代陈其元在《庸闲斋笔记》中就写道:“余最不信星命推步之说,以为一时(注:指一个时辰,合两小时)生一人,一日生十二人,以岁计之则有四千三百二十人,以一甲子(注:指六十年)计之,止有二十五万九千二百人而已,今只以一大郡计,其户口之数已不下数十万人(如咸丰十年杭州府一城八十万人),则举天下之大,自王公大人以至小民,何啻亿万万人,则生时同者必不少矣。其间王公大人始生之时,必有庶民同时而生者,又何贵贱贫富之不同也?”在这里,一年按360日计算,一日又分为十二个时辰,得到的抽屉数为60×360×12=259200。

  所谓“电脑算命”不过是把人为编好的算命语句象中药柜那样事先分别一一存放在各自的柜子里,谁要算命,即根据出生的年月、日、性别的不同的组合按不同的编码机械地到电脑的各个“柜子”里取出所谓命运的句子。这种在古代迷信的亡灵上罩上现代科学光环的勾当,是对科学的亵渎。