17.1勾股定理(一)学案
学习目标:经历探究勾股定理的过程,
了解勾股定理的证明方法;会用勾股定理进行简单计算。
学习重点:观察与验证勾股定理;勾股定理的简单应用
学习难点:勾股定理的推导
学习流程:
一、创境引入
相传2500年前,毕达哥拉斯有一次在朋友家做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的数量关系,这个关系就是我们今天要学习的“勾股定理”。
二、揭示学法,自主学习(9分钟)
自学22页~24页“探究1”以上的内容,完成以下任务:
1、完成22页“思考”,你发现了什么(从面积方面入手)?
2、完成23页的“探究”,你得出了什么结论?(小组讨论)
3、熟记命题1的内容。该命题用文字语言叙述为:
《勾股定理》课后练习含答案
二、填空题:
11、已知Rt△ABC两直角边长为5,12,则斜边长为 .
12、已知一个Rt△的两边长分别为3和4,则第三边是 .
13、如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米,一只鸟从一棵树的树梢飞到另一棵数的树梢,问小鸟至少飞行 米.
17.1勾股定理同步测试卷含答案
三、 解答题
17. A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km的速度向北偏东60°的BF方向移动,距离台风中心200km的范围内是受台风影响的区域.
(1)自己画出图形并解答:A城是否受到这次台风的影响?为什么?
(2)若A城受到这次台风影响,那么A城遭受这次台风影响有多长时间?
18. 如图,在△ABC中,AD⊥BC,垂足为D,∠B=60°,∠C=45°.
(1)求∠BAC的度数.