课程标准教案数学五年级范文

孙小飞

课程标准教案数学五年级2021范文1

教学内容:

教科书第1页的例1、例2和试一试,完成练一练和练习一的第1~2题。

教学目标:

理解方程的含义,初步体会等式与方程的联系与区别,体会方程就是一类特殊的等式。

教学重点:

理解并掌握方程的意义。

教学难点:

会列方程表示数量关系。

教学过程:

一、教学例1

1.出示例1的天平图,让学生观察。

提问:图中画的是什么?从图中能知道些什么?想到什么?

2.引导

(1)让不熟悉天平不认识天平的学生认识天平,了解天平的作用。

(2)如果学生能主动列出等式,告诉学生:像“50+50=100”这样的式子是等式,并让学生说说这个等式表示的意思;如果学生不能列出等式,则可提出“你会用等式表示天平两边物体的质量关系吗?”

二、教学例2

1.出示例2的天平图,引导学生分别用式子表示天平两边物体的质量关系。

2.引导:告诉学生这些式子中的“x”都是未知数;观察这些式子,说一说写出的式子中哪些是等式,这些等式都有什么共同的特点。

3.讨论和交流:写出的式子中,有几个是等式,有几个不是,而写出的等式都含有未知数,在此基础上,揭示方程的概念。

三、完成练一练

1.下面的式子哪些是等式?哪些是方程?

2.将每个算式中用图形表示的未知数改写成字母。

四、巩固练习

1.完成练习一第1题

先仔细观察题中的式子,在小组里说说哪些是等式,哪些是方程,再全班交流。要告诉学生,方程中的未知数可以用x表示,也可以用y表示,还可以用其他字母表示,以免学生误以为方程是含有未知数x的等式。

2.完成练习一第2题

五、小结

今天,我们学习了什么内容?你有哪些收获?需要提醒同学们注意什么?还有什么问题?

六、作业

完成补充习题

板书设计:

方程的意义

X+50=100

X+X=100

像X+50=150、2X=200这样含有未知数的等式叫做方程

课程标准教案数学五年级2021范文2

教学内容:

长方体和正方体的表面积概念,长方体和正方体表面积的计算

教学目标 :

1.学生通过操作掌握长方体和正方体的表面积的概念,并初步掌握长方体和正方体表面积的计算方法。

2.会用求长方体和正方体表面积的方法解决生活中的简单问题。

3.培养学生分析能力,发展学生的空间概念。

教学重点:

掌握长方体和正方体表面积的计算方法。

教学难点:

会用求长方体和正方体表面积的方法解决生活中的简单问题

教具运用:

长方体、正方体纸盒,剪刀,投影仪

教学过程:

一、复习导入

1.什么是长方体的长、宽、高?什么是正方体的棱长?

2.指出长方体纸盒的长、宽、高,并说出长方体的特征。指出正方体的棱长,并说出正方体的特征。

二、新课讲授

1.教学长方体和正方体表面积的概念。

(1)请同学们拿出准备好的长方体纸盒,在上面分另标出“上”、“下”、“前”、“后”、“左”、“右”六个面。

师生共同复习长方形的特征。请同学们沿着长方体纸盒的前面和上面相交的棱剪开,得到右面这幅展开图。

(2)请同学们拿出准备好的正方体纸盒,分别标出“上、下、前、后、左、右”六个面,然后师生共同复习正方体的特征。让学生分别沿着正方体的棱剪开。得到右面正方体展开图。

(3)观察长方体和正方体的的展开图,看看哪些面的面积相等,长方体中每个面的长和宽与长方体的长、宽、高有什么关系?

观察后,小组议一议。引导学生总结长方体的表面积概念。长方体或正方体6个面的总面积,叫做它的表面积。

2.学习长方体和正方体表面积的计算方法。

(1)在日常生活和生产中,经常需要计算哪些长方体或正方体的表面积?

(2)出示教材第24页例1。

理解分析,做一个包装箱至少要用多少平方米的硬纸板,实际上是求什么?(这个长方体饭包装箱的表面积)

先确定每个面的长和宽,再分别计算出每个面的面积,最后把每个面的面积合起来就是这个长方体的表面积。

(3)尝试独立解答。

(4)集体交流反馈。

老师根据学生的解题思路进行板书。

方法一:长方体的表面积=6个面的面积和

0.7×0.4+0.7×0.4+0.5×0.4+0.5×0.4+0.7×0.5+0.7×0.5=0.28+0.28+0.2+0.2+0.35+0.35=1.66(m2)

方法二:长方体的表面积=上、下两个面的面积+前、后两个面的面积+左、右两个面的面积

0.7×0.4×2+0.5×0.4×2+0.7×0.5×2=0.7+0.56+0.4=1.66(m2)

方法三:(上面的面积+前面的面积+左面的面积)×2

(0.7×0.4+0.5×0.4+0.7×0.5)×2=0.83×2=1.66(m2)

(5)比较三种方法,你认为求长方体的表面积关键是找什么?这三种方法你喜欢哪种方法?

(6)请同学们尝试自己解答教材第24页例2, 集体交流算法,请学生说说你是怎样解答计算正方体表面积的。

三、课堂作业

1. 完成教材第23页“做一做”。

2.完成教材第24页“做一做”。

3.完成教材第25~26页练习六第1、2、3、4、6、7题。

四、课堂小结

今天我们又学习了长方体和正方体的表面积,并掌握了长方休和正方体表面积的计算方法,通过学习,你能说说你的收获吗?

板书设计:

长方体和正方体的表面积(一)

课程标准教案数学五年级2021范文3

教学内容:

求一些不是完整六个面的长方体、正方体的表面积

教学目标:

1.利用长方体和正方体的表面积计算方法,结合实际生活,求一些不是完整六个面的长方体、正方体的表面积。

2.通过练习、操作发展空间想象能力。培养学生对数学的兴趣与求知欲

教学重点:

能根据生活实际,对不是完整六个面的长方体、正方体的表面积进行正确的判断。

教学难点:

求一些不是完整六个面的长方体、正方体的表面积。

教具运用:

课件

教学过程:

一、复习导入

师:上节课我们认识了长方体和正方体的表面积,并且学习了表面积的计算方法,请大家试着解决下面的两个问题。(出示课件)

1.做一个长8厘米,宽6厘米,高5厘米的纸盒,至少需要多少纸板?

2. 一个棱长和为180的正方体,它的表面积是多少?学生独立计算,教师巡视指导,集体订正。师:通过前两节课的学习,我们学会了长方体、正方体表面积的计算方法,就是计算出它们6个面的面积之和,但在实际生活中,有时只需要计算其中一部分面的面积之和,这就要根据实际情况来思考了。

二、新课讲授

1.教材25页第5题

(1)一个长方体的饼干盒,长10 cm、宽6 cm、高12 cm。如果围着它贴一圈商标纸(上下面不贴),这张商标纸的面积至少需要多少平方厘米?

(2)学生读题,看图,理解题意。

(3) “上下面不贴”说明什么?(说明只需要计算4个面的面积,上下两个面不计算)

(4)学生尝试独立解答。

(5)集体交流反馈。

方法一:10×12×2+6×12×2=240+144=384 (cm2)

方法二:(10×12+6×12)×2=(120+72)×2=384 (cm2)

答:这张商标纸的面积至少需要384平方厘米。

2.教材26页第8题

(1)课件出示教材26页第8题图片及文字:一个玻璃鱼缸的形状是正方体,棱长3 dm,制作这个鱼缸时至少需要玻璃多少平方分米?(鱼缸的上面没有盖)

(2)学生读题,看图,理解题意。

(3)提问“鱼缸的上面没有盖”说明什么?(说明只需计算正方体5个面的面积之和)

(4)请学生独立列式计算,教师巡视,了解学生是否真正掌握。

3×3×5=9×5=45 (dm2)

答:制作这个鱼缸时至少需要玻璃45平方分米。

三、课堂作业

完成教材第26页练习六第9、10题。

四、课堂小结

提问:同学们,这节课我们学习了求一些不是完整六个面的长方体、正方体的表面积,这节课你有什么收获?

五、课后作业

完成练习册中本课时练习。

板书设计:

长方体和正方体的表面积(2)

一个长方体的饼干盒,长10cm、宽6cm、高12cm。如果围着它贴一圈商标纸(上下面不贴),这张商标纸的面积至少需要多少平方厘米?

方法一:10×12×2+6×12×2

=240+144

=384 (cm2)

方法二:(10×12+6×12)×2

=(120+72)×2

=384 (cm2) 答:这张商标纸的面积至少需要384平方厘米。

一个玻璃鱼缸的形状是正方体,棱长3 dm,制作这个鱼缸时至少需要玻璃多少平方分米?

3×3×5

=9×5

=45 (dm2) 答:制作这个鱼缸时至少需要玻璃45平方分米。

课程标准教案数学五年级2021范文4

教学内容:

长方体和正方体的表面积练习

教学目标:

1.使学生熟练地掌握长方体和正方体表面积的计算方法,能灵活地解决一些实际问题。

2.培养学生分析、解决问题的能力,以及良好的思维品质。

教学重点:

掌握长方体和正方体表面积的计算方法,能灵活地解决一些实际问题

教学难点:

能灵活地解决一些实际问题

教具运用:

课件

教学过程:

一、复习导入

1.如果告诉了长方体的长、宽、高,怎样求它的表面积?

2. 如果要求正方体的表面积,需要知道什么?怎样求?

3. 一个长4分米、宽3分米、高2分米的长方体,它占地面积是多少平方米?表面积是多少平方米?

4.一只无盖的长方形鱼缸,长0.4米,宽0.25米,深0.3米,做这只鱼缸至少要用玻璃多少平方米?

二、课堂作业

完成教材第26页第11~13题。

1.第11题

(1)分析题目的已知条件和问题。

(2)粉刷教室要粉刷几个面?哪一个面不要粉刷?还要注意什么?

(3)列式解答

4×[8×6+(8×3+6×3)×2-11.4]

=4×[48+42×2-11.4]

=4×120.6=482.4(元)

答:粉刷这个教室需要花费482.4元。

2.第12题

这是一道计算组合图形的表面积的题,提醒学生:两个图形重叠部分的面积不能算在表面积里。

分析:前后面的面积是相等的,就是把3个长方体前面的面相加即可。

左右两面也相等,实际上就是求中间这个长方体左右的两个面即可。

解:涂黄油漆[40×(65-10)+40×65+40×40]×2

=(2200+2600+1600)×2=12800(cm2)

涂红油漆40×65×2+40×40×3=5200+4800=10000(cm2)

答:涂黄油漆的总面积为12800cm2,涂红油漆的面积为10000cm2。

3.第13题

提示:把一个长方体从中间截断,就可以分成两个正方体。

让学生分别计算出长方体的表面积和切后的两个正方体的表面积和,再比较它们的表面积,看有没有发生变化。

小结:截完后,增加了两个截面。所以,两个正方体的表面积大于原来长方体的表面积。

三、课堂小结

通过这节课的学习,你有什么收获?还有什么问题?

四、课后作业

完成练习册中本课时练习。

板书设计:

长方体和正方体的表面积(三)

长方体的表面积≡(长×宽+长×高+宽×高) ×2

正方体的表面积≡边长×边长×6

课程标准教案数学五年级2021范文5

教学目标:

1、通过实物认识长、正方体,通过学生的观察、对比、小组讨论,了解长、正方体的特点。

2、在操作中认识长、宽、高和正方体的棱长。

3、培养学生的空间想象能力和空间观念。

教学重难点:

通过实物认识长、正方体,了解长(正)方体的特征。

教学过程:

一、复习提问

请同学们回忆一下,我们已经学过哪些平面图形? 长方形和正方形各有什么特征?这两种平面图形之间有什么关系? 我们以前学过的这些图形都是平面图形,今天我们要认识两种立体图形——长方体和正方体。(板书课题:长方体和正方体的认识)

二、探究新知

(一)新课引入:指着各种形体的教具提问,哪些物体的形体是长方体?请学生把长方体挑出来。在日常的生活中你还见过哪些物体的形状是长方体的?学生举例。 我们为什么把这些形状称做长方体呢?长方体有什么特征呢?下面我们一起来研究。

(二)认识长方体。

1.教师拿出火柴盒的模型,说明面、棱和顶点。

2.学生拿学具小组讨论,并出示小组讨论提纲,同时讨论后填写操作实验报告。

面 棱 顶点 长方体 数量 形状 大小 数量 长度 数量 位置

(1)探究完成实验报告。

(2)汇报讨论结果。

(3)认识长方体的长、宽、高。

4.引导学生 指出自己手中学具的长、宽、高,改变学具的位置,在指出长、宽、高。向学生说明长、宽、高根据长方体所摆的位置不同而改变。

5.练习: 要求根据特征判断下面图形是不是长方体?并说出长方体立体图形的长、宽、高是多少厘米。

(教具)

(三)认识正方体

1.学生找出正方体实物来独立观察,观察后按提提纲独立回答问题,独立填写实验操作报告。 独立观察提纲:

(1)数一数,正方体有几个面?每个面是什么形状?相对的面的形状、大小有什么特点?

(2)摸一摸,正方体有多少条棱?它们的长度相等吗?

(3)找一找,正方体有几个顶点? 独立填写实验操作报告: 面 棱 顶点 正方体 数量 形状 大小 数量 长度 数量 位置 1.班集体讨论,订正学生独立完成的实验报告,并完成教师板书,注意启发学生自己总结正方体的特征 2.比较长方体和正方体有何异同? 相同点:6个面、12条棱、8个顶点。 不同点:形状、大小、长短不同,正方体有6个面都是正方形,面积都相等,12个棱长都相等。 3.引导学生认识长、正方体的关系:

(四)新课小结

这结课我们学习了什么内容?你还有什么问题?

三、看书质疑(略)

四、巩固练习

(1)长方体和正方体都有6个面,12条棱,8个顶点。( )

(2)长方体的六个面都是长方形。( )

(3)正方体是由六个正方形组成的图形。( )

(4)正方体是特殊的长方体。( )