高中数学必备计算公式总结

刘莉莉

高考数学必备公式

一.方差的概念与计算公式

例1 两人的5次测验成绩如下:X: 50,100,100,60,50 E(X )=72;Y: 73, 70, 75,72,70 E(Y )=72。

平均成绩相同,但X 不稳定,对平均值的偏离大。方差描述随机变量对于数学期望的偏离程度。单个偏离是消除符号影响方差即偏离平方的均值,记为D(X ):直接计算公式分离散型和连续型,具体为:

这里D(X) 是一个数。推导另一种计算公式

得到:“方差等于平方的均值减去均值的平方”。

其中,分别为离散型和连续型计算公式。 称为标准差或均方差,方差描述波动

二.方差的性质

1.设C为常数,则D(C) = 0(常数无波动);

2. D(CX )=C2 D(X ) (常数平方提取);

证:特别地 D(-X ) = D(X ), D(-2X ) = 4D(X )(方差无负值)

3.若X 、Y 相互独立,则

证:记则前面两项恰为 D(X )和D(Y ),第三项展开后为当X、Y 相互独立时,,故第三项为零。特别地独立前提的逐项求和,可推广到有限项。

方差公式:

平均数:M=(x1+x2+x3+…+xn)/n (n表示这组数据个数,x1、x2、x3……xn表示这组数据具体数值)

方差公式:S2=〈(M-x1)2+(M-x2)2+(M-x3)2+…+(M-xn)2〉?n

三.常用分布的方差

1.两点分布

2.二项分布

X ~ B ( n, p )引入随机变量 Xi (第i次试验中A 出现的次数,服从两点分布)

3.泊松分布(推导略)

4.均匀分布

另一计算过程为

5.指数分布(推导略)

6.正态分布(推导略)

7.t分布 :其中X~T(n),E(X)=0;D(X)=n/(n-2);

8.F分布:其中X~F(m,n),E(X)=n/(n-2);

~正态分布的后一参数反映它与均值 的偏离程度,即波动程度(随机波动),这与图形的特征是相符的。

例2 求上节例2的方差。

解 根据上节例2给出的分布律,计算得到

工人乙废品数少,波动也小,稳定性好。

方差的定义:

设一组数据x1,x2,x3······xn中,各组数据与它们的平均数x(拔)的差的平方分别是(x1-x拔)2,(x2-x拔)2······(xn-x拔)2,那么我们用他们的平均数s2=1/n【(x1-x拔)2+(x2-x拔)2+·····(xn-x拔)2】来衡量这组数据的波动大小,并把它叫做这组数据的方差。

高中数学阶乘公式

例如所要求的数是4,则阶乘式是1×2×3×4,得到的积是24,24就是4的阶乘。 例如所要求的数是6,则阶乘式是1×2×3×……×6,得到的积是720,720就是6的阶乘。例如所要求的数是n,则阶乘式是1×2×3×……×n,设得到的积是x,x就是n的阶乘。

任何大于1的自然数n阶乘表示方法:

n!=1×2×3×……×n

n!=n×(n-1)!

n的双阶乘:

当n为奇数时表示不大于n的所有奇数的乘积

如:7!!=1×3×5×7

当n为偶数时表示不大于n的所有偶数的乘积(除0外)

如:8!!=2×4×6×8

小于0的整数-n的阶乘表示:

(-n)!= 1 / (n+1)!

以下列出0至20的阶乘:

0!=1,注意(0的阶乘是存在的)

1!=1,

2!=2,

3!=6,

4!=24,

5!=120,

6!=720,

7!=5,040,

8!=40,320

9!=362,880

10!=3,628,800

11!=39,916,800

12!=479,001,600

13!=6,227,020,800

14!=87,178,291,200

15!=1,307,674,368,000

16!=20,922,789,888,000

17!=355,687,428,096,000

18!=6,402,373,705,728,000

19!=121,645,100,408,832,000

20!=2,432,902,008,176,640,000

另外,数学家定义,0!=1,所以0!=1!

高中数学公式总结大全

抛物线:y = ax _+ bx + c

就是y等于ax 的平方加上 bx再加上 c

a > 0时开口向上

a < 0时开口向下="">

c = 0时抛物线经过原点

b = 0时抛物线对称轴为y轴

还有顶点式y = a(x+h)_ + k

就是y等于a乘以(x+h)的平方+k

-h是顶点坐标的x

k是顶点坐标的y

一般用于求最大值与最小值

抛物线标准方程:y^2=2px

它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2

由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py

圆:体积=4/3(pi)(r^3)

面积=(pi)(r^2)

周长=2(pi)r

圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标

圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0