苏教版小学数学教学设计最新五篇

马振华

作为一名教学工作者,时常需要编写教学设计,编写教学设计有助于积累教学经验,不断提高教学质量。下面给您带来苏教版小学数学教学设计,希望能够帮助到您。

苏教版小学数学教学设计1

教学内容:

苏教国标版小学数学第四册第73页—75页例题和想想做做第1—4题。

教学目标:

1. 紧密联系学生生活实际,通过操作,使学生经历认识“倍”的学习过程,初步建立“倍”的概念,会比较两个数的倍数关系。

2. 让学生学会分析求一个数是另一个数的几倍的实际问题的数量关系,会解答这样的实际问题。

3. 让学生在学习过程中体会数学知识之间的内在联系,发展学生观察、比较、推理、迁移、有条理地叙述的能力,培养学生善于动脑的良好学习习惯。

4. 让学生进一步体会数学与现实生活的联系,增强学习数学的兴趣和信心。

教学重点:

理解“倍”的概念。

教学难点:

理解“求一个数是另一个数几倍”的含义和计算方法

教学准备:

教师:课件、红色和蓝色磁性圆片若干。

学生:练习纸1张、红色圆片8个,蓝色圆片8个。

一、情境导入

通过课前谈话引入情境图

师:花坛里最先开放的是蓝花和黄花。一起数一数,蓝花有几朵?黄花有几朵?

你能说说蓝花与黄花朵数之间的关系吗?

(学生回答:黄花比蓝花多4朵,蓝花比黄花少4朵)

揭示:蓝花与黄花的朵数之间还有着“倍”的关系。

板书课题:倍的认识

二、操作探究、形成对“倍”的初步认识

(一)“圈一圈”中建立“倍”的概念

1. 教学例1

谈话:如果把2朵蓝花圈起来看作1份的,黄花有这样的几份?

学生在练习纸上圈一圈。

指名回答:黄花有这样的几份?你是怎样圈的?

电脑演示圈的过程。

像这样,(板书) 蓝花有2朵,

黄花有3个2朵,

我们就说,黄花的朵数是蓝花的3倍。

谈话:现在,谁能用 “倍”说说蓝花与黄花朵数之间的关系?

指名练习说。

2. 通过变式,进一步认识“倍”,突出本质属性

(1)改变几倍数,及时类比,形成概念

(课件出示增加4朵黄花)

提问:现在黄花的朵数是蓝花的( )倍呢?能用圈一圈的方法解决吗?

在练习纸的第2题上先圈一圈、再填一填。

黄花有( )个2朵,黄花的朵数是蓝花的( )倍。

汇报:黄花有(5)个 2朵,黄花的朵数是蓝花的(5)倍

反思:

(出示两幅图)

同样都是2朵蓝花,刚才我们得到黄花的朵数是蓝花的3倍,现在怎么又变成5倍了?

黄花如果有10个2朵呢?有100个2朵呢?

(2)改变一倍数,凸显本质,强化概念

(蓝花又开了一朵)

谈话:还是黄花和蓝花比,小兔说:黄花的朵数是蓝花的2倍;小猪说:黄花的朵数是蓝花的3倍;到底是3倍、还是2倍呢?你同意谁的说法?

学生独立思考,同桌交流,全班汇报。

继续设疑,和例题比较,引导学生辨析。

全班汇报交流

小结:看来,在圈的时候不能随意去圈,得根据一份的朵数来圈。

(二)“摆一摆”提升“倍”的认识。

情境:小猴要考考大家了(出示8个红圆片),红圆片的个数是蓝圆片的几倍?

猜测:蓝圆片可能摆几个,红圆片能正好是蓝圆片的几倍?

思考:(出示2个蓝圆片)如何调整红圆片,使我们一眼就看出是几倍?(课件演示)

操作:蓝圆片还有可能摆几个?拿出自己的圆片摆一摆,再和小组同学说一说你的摆法。

展示并介绍不同的摆法:

蓝圆片摆4个,红圆片的个数是蓝圆片的2倍;

蓝圆片摆1个,红圆片的个数是蓝圆片的8倍;

蓝圆片摆8个,红圆片的个数是蓝圆片的1倍

对比辨析:红圆片始终没变一直是8朵,怎么它和蓝圆片的倍数关系发生变化了呢?你发现了什么?(突出理解:1份数在变化,倍数也在变化)

三、自主探索、探究“求一个数是另一个数的几倍”的计算方法

1. (出示情境图)红花12朵,蓝花3朵。

谈话:把红花和蓝花比一比,你能知道红花的朵数是蓝花的几倍吗?

追问:4倍?你们都认为是4倍吗?说一说你的想法。

(1)圈一圈的方法

学生说出自己在脑海里圈图的方法,问:你们是怎么圈的,红花圈出了几个3朵?

课件演示:把花排整齐,验证圈的方法。

(2)列算式的方法。

学生说出计算的方法。

板书算式:12÷3=4(倍)

追问:你怎么想到用除法计算的呢?

结合图进行引导:要求红花的朵数是蓝花的几倍,其实就是想12里面有几个3(出示:12里面有几个3)。

动画介绍:“倍”用来表示数量之间的关系,不是单位名称。

2. 变式练习,体现除法计算的优越性。

师:如果有更多的红花和蓝花,你会用什么方法解决问题?

(出示问题:红花45朵,蓝花9朵,红花的朵数是蓝花的几倍?)

学生尝试完成、集体交流。

为什么不圈一圈了呢?

揭示:在这里,用计算的方法更为简便。

四、巩固练习、拓展提升

1. 连一连、填一填(数学书74页想想做做第3题)

学生独立完成,汇报交流。

师追问:红萝卜为什么要4个一连?

2. 考眼力

(1)出示3根不同颜色的带子。

提问:你能发现其中的倍数关系吗?

抢答:( )带子的长是( )带子的( )倍。

(2)变式:红带子剪成和绿带子一样长。

提问:你又能发现什么新的倍数关系?

揭示:当两个数量一样的时候,它们之间是互为1倍的关系。

五、回顾总结、知识延伸

比较:出示蓝花、黄花相差关系与倍数关系比较图,全课总结。

延伸:结合班级人数,用“倍”说一句话。

板书设计:

倍的认识

蓝花有2朵,

黄花有3个2朵, 12÷3=4

黄花的朵数是蓝花的3倍。

苏教版小学数学教学设计2

教学内容:

苏教版课程标准实验教科书小学数学五年级下册第15-16页“确定位置”。

教材分析:

本课主要学习数对的含义,以及用数对在方格图上确定位置,学生在以前已经学习了类似“第几”“第几排第几个”等方式描述物体在方向或平面上的位置,初步获得了用自然数表示位置的经验。本课主要对这种经验加以提升,用抽象的数对来表示位置,进一步发展空间观念,提高抽象思维能力。数对能帮助学生初步建立二维空间的表象,架起数与形间的桥梁,初步渗透数形结合及坐标思想,这也是学生以后学平面直角坐标系的重要基础。

教学目标:

1.使学生在具体情境中认识列、行的含义,知道确定第几列、第几行的规则;初步理解数对的含义,会用数对表示具体情境中物体的位置。

2.使学生经历用数对描述实际物体的位置到用数对描述方格图上点的位置的抽象过程,知道数对与方格图上点的对应,逐步掌握用数对确定位置的方法,丰富对现实空间和平面图形的认识,进一步发展空间观念。

3.使学生积极参与学习活动,感受数对与生活实际的联系,体会数学文化的价值,拓宽知识视野,激发数学学习的兴趣。

教学重点、难点:

初步理解并掌握数对的含义,理解用数对描述方格图上点的位置的方法。

教学过程:

一、用自己的方法确定位置

1.谈话:仔细观察这一张座位图,你知道小红的位置在哪里吗?

2.交流:学生用自己的方式确定小红的位置。

3.设疑:为什么同一个位置,说法却不一样呢?引发学生对已有的确定位置的方法进行质疑。

4.揭题:怎样才能统一、正确、简明地确定小红的位置呢?今天我们一起来研究确定位置。

【设计意图:让学生用自己的语言来描述小红的位置,激活了学生头脑中已有的描述物体位置的经验,学生的描述可能比较简练但不够准确,可能比较准确但不够简练,通过学生之间互动交流,使他们认识到这些表示方法的优点和不足,产生用统一、简明的方式来确定位置的需求。】

二、用列与行的方法确定位置

1.认识列和行的概念。

谈话:像这样排列时,一般用“列”和“行”来确定位置。什么是“列”,什么是“行”呢?

交流:哪儿是第一列,哪儿是第一行呢?

讲授:一般确定第几列从左往右数,确定第几行从前往后数。

2.用列和行确定位置。

表示:小红的位置,你能用第几列第几行确定吗?让学生尝试用第几列第几行进行描述。

简化:为了研究方便,还可以把这张座位图简化成点子图,小红位置所在的点,我们用A表示。

运用:这儿还有两个点,B、C,也能用第几列第几行说出它们的位置吗?

【设计意图:引导学生建立用“第几列第几行”的方法确定位置的规则,并观察从座位图到点子图的变化过程,感受到用“列与行的方法”确定位置的统一性和准确性。这一板块也是学习在方格图上确定一个点位置的必要过渡环节。】

三、用数对的方法确定位置

1.初步认识数对。

谈话:第几列第几行,让我们确定位置有了统一的说法。不过数学还追求简明,像第4列第2行,能否写得再简明些呢?

比较:比较一下,这些方法中有哪些相同的地方?

交流:学生在交流想法的过程中,初步感受用数对表示位置方法的基本含义。

讲授:介绍数对的写法。

运用:这两个位置,用数对来表示,你能试着写一写吗?并交流写法。

2.及时练习。

谈话:学会了用数对表示点的位置,那根据数对,你能找到对应的点吗?

交流:生介绍找到两个点的过程。

感悟:在交流的过程中感悟数对的含义和思想,掌握数对的写法。

【设计意图:根据数学的简明性特点和符号化特点,自主探索更简捷的表示方法,让学生的主动性和创造性得以尽情释放。在此基础上提升到“数对”的方法上,使学生更加充分感受用数对确定位置的简明性,同时也体验到数对的意义。】

四、用数对的方法在方格图上确定位置

1.根据方格图上的点说出数对。

谈话:刚刚我们在点子图上研究了数对,如果在我们熟悉的方格纸上,你能用数对表示出这个点的位置吗?

交流:如果这就是学校的平面图,你还能用数对说出其他景点的位置吗?

感悟:在方格图上用数对的方法确定位置,首先要确定什么?

2.根据数对在方格图上找到对应点。

谈话:在方格图上,你还能根据数对找到对应的点吗?这儿有三个数对,请找到对应的`点并标上数对,边找边思考,你发现了什么?

交流:在你描点的过程中,你发现了什么?

延伸:根据这一个发现,想一想,同一列上的数对又有怎样的特点?

总结:看来数对不仅能表示出点的位置,还能反映出点和点之间的位置关系。

3.根据图形特点在方格图上选择数对。

谈话:如果顺次连结这些点,就围成了一个三角形。如果再确定一个D点,围成一个平行四边形,D点的位置用数对表示是多少呢?

交流:学生介绍选择数对的过程。

感悟:看得出,同学们对数对又有了新的认识。图形的特征可以反映在数对中,数对的特点也能通过图形来体现。

【设计意图:本课有两大主线贯穿始终,一是图例的抽象和演变,二是是确定位置的方法。两大主线的层层递进与发展,充分展现了本课的数学知识和思想的产生与发展过程。在方格图上用数对确定位置,不仅关注了数对方法的运用,还关注了在方格图用数对确定位置的背景,让学生真正体会到了图形与数对的联系,最重要的是学生真正亲身经历了数学知识的形成过程,感悟了最基本的数学思想。】

五、用数对的思想确定位置

谈话:其实类似这样的现象生活中非常多见,比如下棋时确定棋子的位置。(向学生介绍国际象棋的走法。)

延伸:用经纬线描述地球上各点的位置(介绍北京的位置等)。

总结:同学们,数对真是简单而又神奇,这数对究竟是谁发明的呢?介绍数对发明的背景。

【设计意图:学生掌握了用数对表示位置的方法,为了帮助学生建立数对的思想,“生活中哪些地方用到了数对思想(国际象棋)”和介绍“地球上经纬线知识”两个环节,让学生感悟了“数对思想”的价值。在此基础上,再向学生介绍数对产生的背景,促发学生学会思考,做一个“思想者”。】

苏教版小学数学教学设计3

教学内容:

苏教版数学教科书五年级(下)P93-94

教学目标:

1.通过对已知图形的观察、思考初步建立圆的基本概念,沟通新旧知识之间的联系;在几次画圆过程中理解什么是圆,掌握基本绘图方法,在画和对比中感受圆的本质。

2.让学生经历操作验证的全过程,通过交流分享,不断深化对圆心、半径、直径意义的理解,对它们之间的关系进行深入思考。

3.结合生活实例让学生感受圆的本质,应用半径、直径的意义、联系思考解决问题,体会新旧知识之间的联系,体会数学的价值。

教学重点:

在尝试、操作、思考中理解圆心、半径和直径的意义、联系,感受圆的本质。

教学难点:

沟通新旧知识的联系,在实际问题中思考、应用圆心、半径和直径的意义及联系。

教学准备:

圆规、圆片、练习纸、课件、应用模型。

一、引入

1.从学习过的正方形开始。

引导学生找到正方形的中心点。

从中心点引出到边、顶点的距离,明确其长度不等。

2.逐步呈现正多边形的变化。

引导学生通过比较,形成数学思考。

思考:如果正多边形的边数不断增加,中心点到边、顶点的距离会怎样变化?多边形将趋于……?

引出圆,呈现课题。

设计意图:

从正方形引入,观察中心点到边、顶点距离之间的关系,渗透圆的本质:“平面内到定点的距离等于定长的点的集合”,感受极限思想。

二、画圆

1.用身边的素材自己画圆。

交流不同工具的画法,初步感受圆规画圆有优势。

2.学生汇报,教师示范、规范画圆的方法。

3.学生们再次尝试画圆。

4.对比用圆规画圆和用其它方式画圆的共同点,体会“平面内到定点的距离等于定长的点的集合”。

设计意图:

第一次让学生自主画圆,初步体会,充分容错,引发对圆规画圆“工作原理”的思考;第二次教师示范画圆,尊重教材,有效讲授,形成学生对规范画圆的“有意接受”;第三次再让学生画圆,“反刍”画圆的核心要素,建立圆心、半径的初步感知,为自学做好铺垫。

三、自主学习

1.自学与分享。

(1)了解圆心、半径、直径的意义;(2)在自己画的圆里面标出圆心、半径和直径;画好以后和同桌交流。

2.交流并理解。

学生汇报,教师引导学生补充、质疑,关注理解。

过程中教师示范画圆心、半径、直径。

3.发现与思考。

用圆形纸片折一折、画一画,发现圆中半径、直径的特点,这个圆中半径、直径之间有什么联系?

组织交流反馈。

4.现象与本质。

学生观察自己手中的圆,思考:

(1)半径(直径)真的有无数条?

(2)半径(直径)的长度都相等?

(3)圆中,直径最长吗?半径呢?

结合课件演示,理解圆心、半径、直径间的联系,再次领悟圆的本质。

设计意图:

“以学定教”。学生会的不教,学生通过自学能理解和掌握的不教。

介绍“如何画圆心、半径和直径”时,既提供自主画图、理解同圆半径、 直径联系的机会,又让学生自己的话解释,逐步贴近数学用语。尊重学生与尊重教材并重。

从验证的角度设问“圆中半径真的有无数条?” 让不同层次的孩子产生不同的思考,这个环节具有多重效能,既传递给学生“经得起检验的东西,才能揭示其规律”,又在验证过程中从不同视角去理解圆。

四、深度研究、联系生活。

1.怎样找到圆心。

(1)学生思考、交流自己不同的想法,结合“生成”引导思考。

学生介绍想法,用圆片演示。

在学生理解后,教师课件呈现,再次引发质疑----为什么这样折出来的就是圆心?

引导学生结合今天学习的知识进行分析和解释。

设计意图:

“折一折”并不那么简单,要“折”出半径的意义、直径的意义,要“折”出数学的味道。不断地“反刍”半径、直径的意义,加深印象,深刻体会三要素“圆心、半径、直径”间的联系。

(2)再找圆心。

引发思考:无法折一折的圆形怎样找其圆心?

引导发现:解决问题的过程中体会新旧知识有联系。

充分预设,呈现学生可能出现的思考。

设计意图:

此处设计再一次打破学生刚刚构建的“找圆心”的“好”方法,“折一折”并不那么简单,因为生活中太多的“圆”折不了,设置这样的问题意在引导学生联系已有知识经验进行分析,进行数学思考。学会在解决新问题中发现已有知识的价值,培养学生发现问题、提出问题、应用知识解决问题的能力。

2.联系生活。

引导学生自主使用学到的知识、概念,解决生活中与圆形有关的实际问题。

设计意图:

与教学伊始呼应,从“方”中进入,回“方”中思考。让学生感受数学源于生活,高于生活,又应用于生活的轮回现象;领悟数学可以还解释生活现象,解决现实问题的应用价值;养成用数学眼光、数学思维观察、分析事物的习惯。

六、全课小结。

引导学生简要回顾、梳理本节课学到的知识,小结收获,提出希望。

苏教版小学数学教学设计4

教学内容分析:

《圆的周长》选自苏教版《义务教育课程标准实验教科书数学》五年级(下)第98~99页例4、例5内容。“圆的周长”概念教学是以长方形、正方形周长知识为认知基础,是前面学习“圆的认识”的深化,是后面学习“圆的面积”等知识的基础,因此它起着承前启后的作用,是小学几何初步知识教学中的一项重要内容。

学情分析:

经调查了解发现,有部分学生已经在课前通过各种信息渠道知道了圆的周长计算公式,但能正确理解圆周率的意义和特征的学生只占少数。可见学生知道圆的周长计算公式只是“知其然”,因此,本节课的教学重点是层层深入探索圆的周长与直径的关系,理解圆周率的意义,让学生真正“知其所以然”。

教学目标:

1. 理解圆周长的含义,掌握求圆周长的计算方法,并能正确计算圆的周长。

2. 经历操作、猜想、验证等学习活动,培养探究能力及合作意识,提升思维水平。

3. 深刻理解圆周率的意义,通过介绍我国古代数学家在圆周率方面的伟大成就,感受数学文化,激发民族自豪感。

教学重难点:

重点:圆的周长与直径关系的探讨,理解圆周长的计算方法。

难点:理解圆周率的意义

教具准备:

实物投影议、电脑。

学具准备:

每四个学生一组:1、圆形实物(荧光圈、杯盖、圆形胶带、飞镖盘等)2、直尺一把 3、测量绳一条 4、研究表格 5、计算器

教学过程:

一、复习引入,明晰概念

1. 出示正方形,指一指正方形的周长

2. 出示圆,你知道什么是圆的周长吗?指一指。

3. 课件演示圆的周长。

揭示概念:围成圆一周曲线的长就是圆的周长。

板书课题:圆的周长

【设计意图:由正方形的周长引入,便于学生对周长的概念进行迁移,同时正方形也是在探究圆的周长与直径关系时不可或缺的参照。】

二、直观感知,激发需求

1. 激趣

师:2个图形,给你一把直尺,让你通过测量得到它们的周长,你愿意测量几号?

生感知圆的周长是曲线,不便用尺直接量。

师:老师就想为难你,用直尺量出圆的周长,敢挑战吗?

2. 转化

(1)量荧光圈的周长

明确:可以把接头拔下来,拉直了量。

(2)量飞镖盘的周长。不能拉直,怎么办?

明确:可以用线绕一绕,在尺上滚一滚。

介绍测量过程的注意点,突出几种量法的共同点——化曲为直。

3. 激需

出示摩天轮:这么大的摩天轮,用剪、滚、绕的方法合适吗?

明确:直接测量圆的周长,有时会遇到困难。咱们得想想其它的方法了!

【设计意图:1、测量要求的提出,促使化曲为直的方法呼之欲出,也为操作环节做好准备。2、圆的周长与其它图形周长的本质的区别之一就是,它有时无法通过直接测量边的长度得到周长,而这理应成为学生学习圆周长计算方法的直接需求。】

三、 实践操作,探究新知

(一)初步感知圆的周长与什么有关?

猜想:正方形的周长与边长有关,圆的周长可能与什么有关?

学生讨论后板书:直径、半径。

课件演示,观察验证:三个直径不同的车轮,各向前滚动一周,发现什么?

得出:直径越大,圆的周长就越大;直径越小,圆的周长就越小。

(二)判断推理圆的周长与直径有怎样的关系?

出示圆和它的直径。

猜想:圆的周长与直径之间可能有这样的关系?

生自由猜想:2倍、3倍、4倍(3.14、3.1415926……)

推理验证:

1. 圆的周长可不可能正好是直径的2倍?

2. 圆的周长可不可能正好是直径的4倍?(圆出于方)

3. 圆的周长可能是直径的几倍?(3倍左右)

明确:圆的周长应该比直径的2倍多,4倍少,大约3倍左右……

(三)深入研究圆的周长与直径之间的倍数关系

1. 明确实验要求

实验材料:多种实物圆,细绳,直尺,记号笔,计算器……

实验方法:测量圆的周长和直径,并用计算器算出周长除以直径所得的商。

实验步骤:

(1)小组讨论打算用什么方法测量圆的周长?

(2)小组分工:2人合作测量,1人计算,1人记录。

2. 汇报实验结果

3. 引导发现规律

谈话:仔细观察这一列数据,有什么特点?

明确:周长除以直径所得的商大约是3倍左右(3倍多一些)

追问:正方形的周长除以边长所得的结果总是4,为什么圆的周长除以直径所得的结果却不完全一样呢?

(回应:为什么测出的结果没有3.14或3.1415926呢?)

引导学生认识:测量总是存在一定误差的,用测量得到的数据进行计算,结果得到的只是一个大概的倍数……

4. 介绍圆周率的探索历程

课件展示。

(1)介绍《周髀算经》中的“周三径一”,并理解“周三径一”。

(2)介绍刘徽的割圆术。了解把圆切割成正十二边形、正二十四边形,分别算出周长与直径的比值。

(3)介绍祖冲之的贡献。圆的周长与直径的倍数在3.1415926—3.1415927之间,这是世界上最早的七位小数的值。比国外科学家早1000多年。

(4)近代圆周率的研究结果。

5. 揭示圆周率的概念

师:人们在研究中发现,任何一个圆的周长除以直径的商都是一个无限不循环小数,但同时也是一个固定不变的数。这个倍数我们把它叫做圆周率,用字母π来表示。

师:为了方便,一般保留2位小数,取它的近似值3.14。

6. 归纳圆的周长计算公式。

谈话:知道了周长除以直径等于圆周率,你能推导出圆周长的计算公式吗?

组织学生进行交流。

得出:圆的周长就等于直径乘圆周率

用字母表示:C表示周长,d表示直径,那么C=πd

注:π是一个固定的数,写的时候我们通常把数字写在字母的前面。乘号省略。

【设计意图:1、不同直径车轮的滚动轨迹能清晰地让学生感知直径越大,周长越大;2、数据计测算之前先进行倍数范围的推想,有利于学生对文本的学习产生深层次的反思与感悟;3、直面孩子的一知半解,通过实践操作回应结果的存在性;4、打破常规思维,认为只要周长除以直径就会得到3.14,事实上用测量得到的数据进行计算是永远得不到的,在此基础上,引入割圆术的科学性,渗透极限思想,深刻理解圆周率,感受数学家的伟大贡献。】

四、巩固练习,内化新知

1. 算一算:d=4厘米,求圆的周长。

学生独立完成,注意正确运用圆周长的公式。

2. 选一选:r=5厘米,那么C=( )

A、3.14×5 B、2×3.14×5 C、3.14×2

追问:为什么还要乘2。

理解:同一个圆里,直径是半径的2倍,因此得出圆周长的另一个计算公式:C=2πr

3. 判断:

(1)两个圆的周长相等,那他们的直径也相等。( )

(2)圆的周长是半径的π倍。 ( )

(3)大圆的圆周率大,小圆的圆周率小 ( )

提出要求:题目如果是错误的,错在哪里?可以怎样改?

4. 解决问题:摩天轮的辐条(半径)的长度是10米,请你计算出它的周长。

学生独立练习,订正时教师指名说说是怎样计算的。

5. 挑战题

长方形的长是30厘米,宽是20厘米。在长方形上剪下了一个最大的圆,你能算出这个圆的周长吗?

学生独立解题后同桌说说是怎么解答的。教师指导学生交流。

【设计意图:能利用计算公式进行基本运用,首尾呼应解决实际问题,体现数学的应用价值。】

五、全课总结,体验收获

同学们,通过今天这节课的学习,有哪些收获 ?

板书设计:

圆 的周 长

圆的周长÷直径=圆周率

π≈3.14

圆的周长=直径×圆周率

C=πd或C=2πr

苏教版小学数学教学设计5

教学内容:

义务教育课程标准实验教科书(苏教版)数学五年级下册第61-62页及相应练习。

教学目标:

1.让学生在猜想中寻找相等的分数,操作中验证相等的分数,归纳中总结分数变化的一般规律,经历探索分数基本性质的过程,初步理解分数的分数基本性质,逐步积累基本的数学活动经验。

2.能运用分数的基本性质把一个分数化成指定分母(或分子)而大小不变的分数,培养学生观察、比较、抽象、概括的思维能力。

3.渗透事物是相互联系、发展变化的辩证唯物主义观点,让学生经历学习研究探索的过程,感悟初步的数学思想。

4.让学生在学习中获得成功的情感体验,增强数学学习的信心,体验数学知识研究的一般方法。

教学重点:

理解分数基本性质的含义,掌握分数基本性质的推导过程。

教学难点:

归纳分数的基本性质,理解分数基本性质"零除外"的道理。

教学准备:

正方形纸片、圆片、彩笔、作业纸、多媒体课件。

教学过程:

一、情境导入

再过几天就到六一儿童节了,六一节里很多乐园都有着丰富多彩的活动,今年的六一呀,在数的乐园里,大家也准备呼朋唤友的聚一聚,共同欢庆呢!瞧(课件出示)。

依次点击出现课件,根据课件内容,分别找出3和0.3的朋友,同时引出,并帮它找到朋友。

二、初步感知

1.操作

拿出信封中图片,涂一涂,涂完后与对比一下,看看它们与相等吗?

2.汇报

发现和相等的分数了吗?谁来介绍一下你们组的发现?你们是如何比较的?

发现的朋友的同时,得出不是它的朋友

3.总结

根据学生的汇报,教师总结并板书。

三、深入研究

1.尝试猜想

请同学们根据刚才判断的的朋友,大胆的猜一猜:可能有哪些相等的分数呢?

指名学生说,同时有选择的板书出几组分数。

2.操作验证

大家的猜测是否正确呢,应该怎么办?好的,我们先来折纸验证这几个分数,请同学们听清操作要求:

多媒体播放操作要求:

⑴ 把一张正方形纸对折,涂色表示它的,并将写在涂色部分。,

⑵ 再将它继续对折三次,每次找出一个和它相等的分数并用等式表示出来。

⑶ 每折一次请认真观察:这张纸被平均分成多少份,涂色部分有这样的几份。

学生活动,教师查看学生操作过程,并适时参与,和学生共同学习。

3.操作汇报

学生完成后指名小组汇报(询问、展示不同的折法)。

现在我们再来回放一下刚才大家折纸的过程,(多媒体演示操作过程)

对折一次,正方形被平均分成了2份,涂色部色是1份。再对折一次,什么变了,什么没变?

观察后汇报,再引导观察第三次对折,第四次对折的情况。

通过折纸,我们验证了= = =

现在结合图观察每组分数,分数的分子分母变了而分数大小不变,它们之间是否隐藏着什么奥秘呢?

4.观察研究

独立完成作业纸上的我研究。

我研究:

5.学生汇报

谁来展示一下你的研究成果?

引导学生介绍每组分数的是怎样变化的。

同桌之间互相说一说。

6.观察总结

请同学们观察这组等式,分子分母的变化情况?再联系开始研究的(例1)这组等式观察,从上面的变化中,你发现了什么?想一想,并将你的发现在小组里互相说一说。

让学生汇报:分数的分子和分母同时乘或除以相同的数,分数的大小不变。

请大家自由读读这句话,感觉一下这里哪些词很重要;再仔细的读一读,你认为有没有什么需要完善的地方?0为什么要除外?

让学生给规律起个名字,教师出示课题:分数的基本性质

7.沟通联系

这句话听起来很耳熟,是不是以前曾研究过类似的规律,是什么?配合课件展示,沟通分数基本性质、小数的性质和商不变规律之间的内在的联系。

8.尝试应用

我们已经帮找到了几个朋友,它还有朋友吗?谁能再来说一个,并说说你是怎样想的?如果它的朋友都来,有多少个?看来它的朋友可真多呀!

回看板书上之前的猜想,说一说另外几个分数是否与相等。

四、 应用规律

1、完成作业纸上第1题填数我最准。

指名汇报,追问:你是怎么想的?

在解决= 时,注意展现学生不同的想法,如学生出现得时,课件演示我们来比一比。

小结:看来,这里所说的相同的数不仅可以指整数,有时还可能是小数,以后还可能是分数;分数的分子分母是同时乘或除以相同的数,而不能是同时加或减去相同的数。

2、完成找数我最准。

在直线上表示1/2、5/3、6/4这3个分数的点分别在哪呢?

现在我们知道这3个分数都是相等的,如果让你从中任选1个数表示这个点,你会选哪个,为什么?

五、学习总结

通过今天的学习你有什么收获?学的开心吗?对自己的表现满意吗?