初三数学基础知识点总结
有理数的加法运算:同号相加一边倒;异号相加"大"减"小",符号跟着大的跑;绝对值相等"零"正好。[注]"大"减"小"是指绝对值的大小。
合并同类项:合并同类项,法则不能忘,只求系数和,字母、指数不变样。
去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号。
一元一次方程:已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒。
恒等变换:两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变。(a—b)2n+1=—(b—a)2n+1(a—b)2n=(b—a)2n平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。
完全平方:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。
因式分解:一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚。
"代入"口决:挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小—中—大)
单项式运算:加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行。
一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项、合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。
一元一次不等式组的解集:大大取较大,小小取较小,小大,大小取中间,大小,小大无处找。
一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。
分式混合运算法则:分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简。
分式方程的解法步骤:同乘最简公分母,化成整式写清楚,求得解后须验根,原(根)留、增(根)舍别含糊。
最简根式的条件:最简根式三条件,号内不把分母含,幂指(数)根指(数)要互质,幂指比根指小一点。
特殊点坐标特征:坐标平面点(x,y),横在前来纵在后;(+,+),(—,+),(—,—)和(+,—),四个象限分前后;X轴上y为0,x为0在Y轴。
象限角的平分线:象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反。
平行某轴的直线:平行某轴的直线,点的坐标有讲究,直线平行X轴,纵坐标相等横不同;直线平行于Y轴,点的横坐标仍照旧。
对称点坐标:对称点坐标要记牢,相反数位置莫混淆,X轴对称y相反,Y轴对称,x前面添负号;原点对称最好记,横纵坐标变符号。
自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行。
函数图像的移动规律:若把一次函数解析式写成y=k(x+0)+b、二次函数的解析式写成y=a(x+h)2+k的形式,则用下面的口诀"左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了"。
中考数学知识点梳理
一、数与式
代数式部分,要理解透定义和原理,如:相反数、倒数、绝对值、分母有理化、幂的运算、因式分解、分式的化简。数与式部分考查的重点还是基础知识,基本计算,难度较低。分值在20分左右。
这部分是所有学生都应该做对的。
二、方程与不等式组
方程与不等式的复习,要以基础为主,不要只研究难题,要注重过程以及方法的总结。从试卷这部分考题来看,难度都不大,关键是学生能否读懂题目中每一句话的意思,有明确的思路,以及良好的解题过程。因此我们在复习的时候,要加强对以下内容的复习:一元一次方程、二元一次方程组、一元一次不等式(组)、一元二次方程。注意整体代换思想,换元法的训练。方程(组)与不等式(组)部分考查方程和方程组的解法及一元二次方程的根的判断,还有方程在应用题中的应用。不等式主要考查不等式的解法及性质。
该部分难度适中,分值在15分左右。
三、图形的认识
几何部分的考查内容主要是:相交线与平行线、全等三角形、相似三角形、等腰三角形、直角三角形、平行四边形、菱形、矩形、正方形、圆的有关问题。三角形部分主要会考查三角形中的三线、三角形全等、相似的性质及判定。分值在15分左右,该部分考题一般较为简单。四边形部分会延续对平行四边形、矩形、菱形、正方形判定及性质与应用的考查。分值为9分左右,难度中等。
圆是必考内容,课本上对圆的内容设置难度较低,所以在中考中出现的.试题考查的知识点主要集中在垂径定理、切线判定与性质、面积计算的部分。分值在13分左右,难度中等。
四、空间与图形
几何部分的难点在于初中数学中三大变换(平移、旋转、轴对称)与以及与上述三类图形结合的几何综合题,这部分要求学生熟练掌握三大变换的概念和性质,分值一般在8分左右。
在平时的复习中要注重对数学思想的理解,在练习中要有意识地训练我们的数学思维,主要包括如下几个数学思想:
①分类讨论的思想;如在等腰三角形中对角的讨论,对边的讨论很重要;
②整体思想换元法;
③数形结合思想;
④配方法;
⑤递推思想。
该模块还包含视图与投影,主要考察三视图,投影比较少,相对简单。
五、函数及其图像
中考对于函数部分的考查比例非常重,它是代数部分的重点内容,也是难点内容。 考查的对象主要是:一次函数、反比例函数、二次函数。
主要研究函数的解析式,取值范围,数形结合的思想,分类讨论的思想。对于必须掌握的一定要复习到位,比如待定系数法求三种函数的解析式,函数与方程的联系与转换,函数与不等式的关系,函数里的最值问题与归纳。
函数的实际应用,常出现在试卷难度最大的代数综合题中,分值在25分左右。
六、统计与概率
统计与概率部分是必考部分,在复习的时候要有针对性。知识点考查热点有:扇形统计图、平均数、中位数、众数、极差、方差、标准差、概率的意义极其计算(列表法、树状图法)。
概率统计部分比重较少,基本为两道选择、一道解答,约13分。这部分考查的内容基本为对概念的理解,难度较低,这部分也是学生必得分的部分。
中考数学知识点总结
知识点1:一元二次方程的基本概念
1.一元二次方程3x2+5x-2=0的常数项是-2.
2.一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2.
3.一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7.
4.把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0.
知识点2:直角坐标系与点的位置
1.直角坐标系中,点A(3,0)在y轴上。
2.直角坐标系中,x轴上的任意点的横坐标为0.
3.直角坐标系中,点A(1,1)在第一象限。
4.直角坐标系中,点A(-2,3)在第四象限。
5.直角坐标系中,点A(-2,1)在第二象限。
知识点3:已知自变量的值求函数值
1.当x=2时,函数y=的值为1.
2.当x=3时,函数y=的值为1.
3.当x=-1时,函数y=的值为1.
知识点4:基本函数的概念及性质
1.函数y=-8x是一次函数。
2.函数y=4x+1是正比例函数。
3.函数是反比例函数。
4.抛物线y=-3(x-2)2-5的开口向下。
5.抛物线y=4(x-3)2-10的对称轴是x=3.
6.抛物线的顶点坐标是(1,2)。
7.反比例函数的图象在第一、三象限。
知识点5:数据的平均数中位数与众数
1.数据13,10,12,8,7的平均数是10.
2.数据3,4,2,4,4的众数是4.
3.数据1,2,3,4,5的中位数是3.
知识点6:特殊三角函数值
1.cos30°= 。
2.sin260°+ cos260°= 1.
3.2sin30°+ tan45°= 2.
4.tan45°= 1.
5.cos60°+ sin30°= 1.
知识点7:圆的基本性质
1.半圆或直径所对的圆周角是直角。
2.任意一个三角形一定有一个外接圆。
3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。
4.在同圆或等圆中,相等的圆心角所对的弧相等。
5.同弧所对的圆周角等于圆心角的.一半。
6.同圆或等圆的半径相等。
7.过三个点一定可以作一个圆。
8.长度相等的两条弧是等弧。
9.在同圆或等圆中,相等的圆心角所对的弧相等。
10.经过圆心平分弦的直径垂直于弦。
知识点8:直线与圆的位置关系
1.直线与圆有唯一公共点时,叫做直线与圆相切。
2.三角形的外接圆的圆心叫做三角形的外心。
3.弦切角等于所夹的弧所对的圆心角。
4.三角形的内切圆的圆心叫做三角形的内心。
5.垂直于半径的直线必为圆的切线。
6.过半径的外端点并且垂直于半径的直线是圆的切线。
7.垂直于半径的直线是圆的切线。
8.圆的切线垂直于过切点的半径。