高考学霸状元的数学学习方法经验参考

莉落

高考状元数学学习方法经验

数学知识点繁多,要做到有条不紊地把握知识点实属不易,需要用一条线将这些零散的知识点串起来。知识网络法可以概括为以下两种模式。

第一类,公式推导数学学习方法

总结必须掌握的公式,知其然也要知其所以然,利用公式间的相互关联进行推导。高考的知识点来源于课本,将课本上的例题改编一下,就可以得到一道高,将一些基本题或知识点综合一下,就可以变成一道难题。万变不离其宗,根据日常梳理的知识点,我们便可以将难点个个击破。

第二类,构图记忆数学学习方法

即用画图表的方式将知识点之间的关系、适用条件、特征等标注出来。从书中的一章一节,层层细分,对知识点进行归纳、总结,直到比较终脱离书本也能回忆出个中的联系。这种方法听似枯燥、繁杂,实际操作时可以与具体习题(比较好难度不大但有一定综合性)结合起来。构图记忆法注重的是基础,提高的是能力。

高考状元数学学习方法

1.重视数学课堂提高上课效率

你的大部分疑问困惑在上课时老师通常会提到,有什么大家都不解的地方也一定要在课堂之内把它解决。上课非常重要,是你在学校学习的最大组成部分,是你和老师的主要接触时间,是你大部分知识的直接来源。

2.多与老师交流

冰冻三尺非一日之寒。学好数学并非一夜之间的事情。寂寞苦行,刚开始你可能茫无头绪,你可能艰难摸索,下了功夫也找不到自己的学习方法,花了大量的时间也不得要领,你孤独的脑袋想不出数学优美在哪儿。那么,请求助于你的老师,请相信你的老师。

3.消除恐惧心理

学好数学首先要消除恐惧心理。摘掉你的有色眼镜,抛弃你的自以为是。要相信自己是能够学好的,只要肯下功夫并且有正确的学习方法。

对于数学的学习一定要注意上面提到的几点,要消除恐惧心理,注意课堂上的学习,还要多与老师进行交流,这样很有利于学生数学的学习。

数学高考状元的学习方法

学习数学最重要的一点就是:新旧结合、注重通法、记忆结论、抠透细节。

学了新知识,回头看看旧的东西,你会发现可以用新知识解决许多旧问题,同样只要你善于联系,旧知识照样可以解决新问题。

例如:用导数解决函数单调性问题,向量解决立体几何问题,数列证明不等式,当然函数也可解决不等式。

因此,知识的结合是很重要的。

就说数形结合吧,数没有形直观,形没有数逻辑性强,二者刚好互补。

同样,结合意味着化归、转化,如:非等比,等差数列转化为等比,等差数列,甚至各项大于0的等比数列取对数也可化为等差数列。

所有公式中,万能公式沟通了三角与实数(只需令tanA=x),这不也是一种结合吗?再比如:求y=x+4/x的值域,我们可以分x>;0,x<;0,应用均值不等式,但若你令x=2tanA,则y=2(tanA+cotA)=4/sin2A,其值域呼之欲出啊!对结论的记忆不用刻意去记,只要你做一个有心人,平时做题时注意积累就好,利用结论可以迅速解决选择和填空,还可以开阔你的思路