最新沪教版五年级上册数学教案模板

秦风学

最新沪教版五年级上册数学教案模板1

一、 说教材

《倒数》是北师大版版小学数学五年级下册的内容。教材首先出示乘积是1的分数乘法,从而引出分数的含义,并举例说明倒数的特点。从教材的内容来看,比较简单。数学知识的联系性很广泛,比如本册将要学习的《分数除法》就要运用到倒数的知识。本课的教学目标在于让学生在经历中体验、在做中发现、在活动中理解倒数的意义,能正确的求一个数的倒数,渗透辨证唯物主义关于事物都是普遍联系观念的启蒙教育。教材内容在编排上没有什么特别之处,但教学重点难点比较突出,求1、0、小数、带分数的倒数是本课的重点,也是本课的难点。

二、说教法

基于教材内容比较单调,那么只有在教法上体现新、奇、特才能激发学生的学习兴趣,才能让学生想学,要学。

首先,根据小学生一般是从具体的形象思维逐步向抽象的逻辑思维发展的思维特点,我将在教学中联系小学生熟悉的身边的实际,使抽象的内容直观化,同时把要解决的问题通过联系实际,帮助学生架起由感性认识到理性认识的桥梁,可以达到理解掌握新知识,培养学生兴趣的目的,同时也体现了数学的趣味性。

其次,我将在教学中始终扮演一个引导者,引导学生从事数学活动和交流,引导学生去发现问题,讨论问题,解决问题,帮助他们在自主探索活动中真正理解和掌握本节课的数学知识、技能、思想和方法,培养学生学习数学的能力。

三、说学法

学生是课堂的主人,如何体现学生的主人意识,我想在数学课堂教学中,学生应始终在合作中发现问题,在合作中探讨问题,在合作中解决问题。在这一系列的合作中进行恰当的学习活动,有时也能产生思想的碰撞、人格的升华……这样才能体现学生在数学课堂上的主人意识。

四、说教学过程

本课主要围绕“导入、探究、练习、小结”四个环节进行。

(一) 谈话导入,初步感知。

首先,我们来做个游戏,这是什么字?这呢?(吴、杏、)这两个字都是什么结构的字?你们能把“吴”字上下这两部分换一下位置变成另外的字吗?“杏”字上下两部分换一下位置会变成什么字呢?其实,在“数学王国”里也有这种有趣的现象。这节课,我们就来研究具有这样特点的数——倒数。(板书课题)导入自然。

(二)探究新知,突破重点。

1、认识倒数。

(1)出示算式,学生独立计算,并认真观察,看看你有什么发现。

(2)组织学生交流

①这几组算式有什么共同点?

②等号左边的两个乘数有什么特点?(分子分母调换位置)

③乘积为1的这两个数是什么关系呢?

乘积为1的两个数互为倒数。

④互为倒数必须满足几个条件呢?

⑤你是怎样理解“互为”一词的?

(预设:老师问--同学,你有好朋友吗?你最要好的朋友是谁呢?请站起来。我们可以说--是好朋友吗?应该怎么说呢?“--是--的好朋友,--的好朋友是--。互为是指互相成为。)

(3)针对第一组算式我们可以这样说:因为4/5×5/4=1,所以, 4/5是5/4的倒数,5/4是4/5的倒数,也可以说4/5和5/4互为倒数。

(4)用因为……所以……说一说谁是谁的倒数。

2、进一步理解倒数

(1)出示表格,计算长方形的面积。

(2)这些长、宽不等的长方形的面积都是多少?那么这些长方形的长和宽具有怎样的关系?(面积是1的长方形,它的长和宽互为倒数。)

3、求一个数的倒数。

(1)求一个分数的倒数

观察表格,思考:4/3的倒数是多少?9/7的倒数是多少?

①求一个分数的倒数我们可以怎么做?

②只要把这个分数的分子分母调换位置。

③随机练习:2/9的倒数是多少?7/4的倒数是多少?5/6的倒数是多少?……

(2)求一个整数的倒数

出示题(长方形的面积都是1,请你填一填2、3、)

①这些长方形的面积仍然是1?那么它们的长和宽又有怎样的关系呢? 谁来说说括号里填几?这些数都是什么数?

②求一个整数的倒数我们可以怎么做?

可以把整数看成分母是1的分数,调换分子分母的位置。也可以总结为:这个整数是几,它的倒数就是几分之一。

③随机练习:3的倒数是多少?5的倒数是多少?……

(3)求1的倒数

出示题(正方形的面积是1,请你填一填1)

①这里该填几?为什么?

②1的倒数是多少?为什么?

1的倒数是1。

(4)求一个小数的倒数

出示题(长方形的面积都是1,请你填一填0.4)

这个长方形的面积也是1,它的宽是几?求它的长其实是求这个数的什么?想一想,该怎样求一个小数的倒数?小组讨论。)

把这个小数化成分数,再调换分数的分子、分母。

(5)0的倒数

0有没有倒数呢?为什么?

小组交流(因为0乘任何数都得0;0不能做除数。)

0没有倒数。

4、总结求倒数的方法

(三)巩固练习,拓展延伸

练习题遵循由浅入深、由易到难,面向全体的原则,同时也有拓展延伸,给学优的学生思考、展示的机会,对学生所学的知识也有一个全面的考察。

(四)课堂小结,谈谈感受。

让学生谈谈上了这堂课的感受,这堂课最让你感到高兴的是什么?最让你值得自豪的是什么?要启发学生说出自己的真实感受,这既是课堂小结,同时也注重了对学生的人文培养。

最新沪教版五年级上册数学教案模板2

一、说教材

“倒数”是北师大版九年义务教育六年制小学数学第十册第三单元的内容。本节课是在学生学习了分数乘法的基础上进行教学的,主要是为后面学习分数除法做准备的。它主要包含两部分知识:一是倒数的意义,二是求一个数倒数的方法。内容看似简单,但对学生来说比较抽象,难理解。根据对教材的认识和分析,结合学生实际,我拟订了如下学习目标:

学习目标:

1、在计算、比较、观察中,发现倒数的特征并理解倒数的意义。

2、掌握求一个数的倒数的方法。

教学重点:

本着课程标准,在吃透教材基础上,我觉得首先必须掌握倒数的意义与求法,其次是1、0的倒数,小数、带分数倒数的求法,所以我认为倒数的意义及其倒数的求法是教学的重点。因为乘积是1的两个数互为倒数,要强调倒数是对两个数来说的,它们是相互依存的,不能孤立地说某一个数是倒数,所以我认为正确理解倒数的意义是教学的难点。教学的关键就是教会学生克服难点,办法是结合课本中的例子说明,然后让学生举出几组倒数,并对学生的回答发表意见,用倒数的意义来检验所举的例子对不对。

二、 说教法、学法

本课我采用了发现式教学法、小组讨论式教学法。在课堂中采取讲练结合的模式,给学生足够的时间,充分地让学生自学。我将在教学中始终扮演一个引导者,合作者的角色,引导学生从事数学活动和交流,让他们在合作中发现问题、讨论问题、解决问题,引导学生主动参与到整个学习过程中去,让学生自己组织学习材料,给学生提供放手的思维空间,并尊重学生的自主性,允许学生在探究新知中犯错误,并在修正错误的过程中体会成功。帮助他们在自主探索活动中真正理解和掌握本节课的数学知识、技能、思想和方法,培养学生学习数学的能力。

本节课,我根据对教材的分析、处理和学生的认知水平,设计了如下教学程序。

三、说教学过程

(一) 创设情境,导入新课

数学学习应该与学生的生活融合起来,从学生的生活经验和已有的知识背景出发,让他们在生活中去发现数学、探究数学、认识并掌握数学。所以我由生活中的具体的实例引入:

先看看语文中有趣的“倒数”现象。汉字“吴——吞”,“杏——呆”激发兴趣!然后联想自然界中这样上下颠倒的动物。(蝙蝠、树懒)再到让学生思考:数字有没有这样的特性呢?举例说明,从而引出本节课的主题:倒数。

(二)通过自学、小组讨论的方式来学习,并且考虑以下三个问题:

1. 什么是倒数?

2. 互为倒数中的“互为”是什么意思?

3. 如何求一个数的倒数?

在小组自学过程中,深入个学习小组,并引导学生抓住“互为”二字作文章,让学生理解“互为”应该是双方面的,例如“我和你互相成为朋友”的意思,可以理解成“我是你的朋友”,或者“你是我的朋友”,渗透“互为”这个倒数概念中的关键词语,帮助学生理解“互为”的含义,从而为建构新知扫清语言理解障碍。再组织同桌之间互相说倒数,以巩固理解。

求倒数的方法,仍采用小组汇报的方式,师从以下几方面进行点拨:

① 找倒数(分数),引导学生考虑怎么找的?有什么规律?引导学生概括总结出本课新的知识点:求一个数的倒数,只要把这个数的分子、分母调换位置。

② 整数(大于1的自然数),这样的数怎么办?引导学生概括总结:整数可以看成分母是1的分数,它们的倒数也是只要把这个数的分子、分母调换位置。

③ 1有没有倒数?如果有,它的倒数是多少?引导学生概括总结:1有倒数,1的倒数就是它本身,因为1等于一分之一,一分之一分母、分子调换位置还是一分之一,就是1。

④0有没有倒数?学生可能会引起争议,0不能作分母,0不能作除数,任何一个数和0相乘的积都不会是1,所以0没有倒数。

⑤带分数及小数,引导学生归纳总结:先变成假分数,再调换分子分母的位置。

(三)巩固练习

通过达标反馈巩固求倒数的方法。

(四)即时训练—巩固新知

为了使学生达到对知识的深化理解,从而达到巩固提高的效果,我特地设计了一组即时训练题,通过学生的观察尝试,讨论研究,教师引导来巩固新知识。

(五)总结反思——提高认识

由学生总结本节课所学习的主要内容

四、简述板书设计

(略)

结束:以上,我仅从说教材,说教法,说学法,说教学程序等几方面,说明了“教什么”和“怎么教”,阐明了“为什么这样设计”。希望各位领导、老师对本次说课提出宝贵意见。

最新沪教版五年级上册数学教案模板3

教学内容:

教材第25~26页的内容及练习。

教学目标:

1.在涂一涂,算一算等活动中,探索并理解分数除法的意义。

2.探索并掌握分数除以整数的计算方法,并能正确计算。

3.能运用分数除以整数的计算方法解决实际问题。

教学重难点:

1.探索并理解分数除法的意义。

2.探索并掌握分数除以整数的计算方法,能正确计算。

教学过程:

一、创设情景激趣揭题

1.引导操作:出示一张7等份的纸,让学生涂一涂,用它表示一个分数。

2.引入并板书课题:分数除法(一)

二、扶放结合探究新知

1.提问:如果把这张纸的4/7平均分成2份,每份是多少?

2.把这张纸的4/7平均分成3份,又该怎样解决?

3.引导归纳分数除以整数的意义及计算方法。

4.想一想;整数除法也有类似的规律吗?

5.填一填,验证猜想。

1÷4   1×1/4

7÷3  7×1/3

三、反馈矫正落实双基

1.出示26页试一试。

2.指导完成26页练一练的1~3题。

四、小结评价布置预习

1.引导小结

(1)这节课我们学习了什么知识?

(2)还有什么问题?

2.布置预习:27~28分数除法(二)

板书设计:

分数除法(一)

4/7÷2=4/7×1/2=2/7

4/7÷3=4/7×1/3=4/21

分数除以整数的意义,与整数除法的意义相同。

计算法则:分数除以整数(零除外),等于乘这个整数的倒数

最新沪教版五年级上册数学教案模板4

教学目标:

1、知识目标:体验分数除以整数的计算方法,在讨论交流的基础上总结出计算法则,并能正确的计算。

2、能力目标:培养学生动手动脑能力,以及判断、推理能力。

3、情感目标:培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验操作的欢乐。

教学重点:

能求一个数的倒数。

教学难点:

分数除以整数计算法则的推导过程。

教学准备:

长方形纸片。

教学过程:

一、创设情景,教学分数除法的意义

1、师:同学们我们学过整数除以整数以及小数除法,今天我们将来学习数除法。下面我们一起来研究一下几个小朋友有关分饼的问题,请你们列出算式并计算,看谁算的又快又好!

(1)每人吃1/2块饼,4个人共吃多少块饼?

(2)把2块饼平均分给4个人,每人吃了多少块饼?

(3)有2块饼,分给每人1/2块,可分给几个人?

2、师:我们一起来看一下这三个算式,观察一下这三个算式的已知数和得数,说一说它们都是已知什么,求什么的运算?这就是分数除法的意义。

师:讨论:分数除法的意义和整数除法的意义一样吗?

总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

二、探究分数除法的计算方法

(1) 引导参与,探究新知

师:我们已经知道了分数除法的意义,那么如何来计算呢?请同学们看黑板。

出示问题1。

请大家拿出一张操作纸,涂色表示出这张纸的4/7。

师:把一张纸的4/7平均分成2份,每份是这张纸的几分之几?怎样列式?4/7÷2

请同学们通过涂一涂,算一算的方式来研究4/7÷2怎样计算。小组合作,汇报交流。

方法一:把4/7平均分成2份就是把4份平均分成2份,每份是2个1/7,也就是2/7。展示折纸和计算过程。4/7÷2=4÷2/7=2/7

方法二:把一张纸的4/7平均分成2份,求每份是多少就是求4/7的1/2是多少,可以用乘法来做。展示折纸和计算过程。4/7÷2=4/7×1/2=2/7

师:对这种做法大家有什么疑问吗?

生:这儿是除法怎么变成了乘法?

师:老师也有这个疑问,你能讲讲吗?

师:谁能结合图来讲一讲呢?

师:很好!把除法转化成乘法,问题迎刃而解,你真棒!……

(2)质疑问难,理解新知

①师小结:有的是用分子除以整数,分母不变的方法算出结果2/7,有的是转化成分数乘法来做……那么在这些方法中,你最喜欢哪种?

②接下来就请你用自己喜欢的方法来解决这个问题:把一张纸的4/7平均分成3份,每份是这张纸的几分之几?先列式再用自己喜欢的方法计算。

③通过计算你们有什么发现?

生1、用第一种方法就不能做了。因为: 上一题的时候,分子4是2的倍数,4÷2能得到整数商。而 4÷3时,分子4不是3的整倍数,得不到整数商。所以不能用分子除以整数这种方法了。

生2:把除法转化成乘法来做……4/7÷3=4/7×1/3=4/21

能再讲讲这样做的道理吗?

师:“4/7÷3”表示把4/7平均分成3份,取其中的一份。

请同学们拿出第二张操作纸,你能把图中的4/7平均分成3份,并表示出其中的一份吗?

展示学生的分法

师(指着涂色部分):你所表示的这一部分是4/7的多少?

通过直观图理解4/7的1/3是4/21

(3)比较归纳,发现规律。

①师:在计算这两道题时同学们想到了不同的算法,计算左边这道题你比较喜欢那种方法?右边呢?

②在两道题的计算中同学们都想到了把除法转化成乘法来做,请观察一下,左边这道算式,在转化的前后什么变了,什么没变?怎么变的?

③师:同学们观察真仔细!那像这样的分数除以整数的题目一般可以怎么计算呢?请同学们在小组内互相说一说!

小组活动,说算法。

④师:通过研讨我们知道了分数除以整数,可以用分子除以整数,但有时不能得到整数商,所以通常转化为乘这个整数的倒数的方法来计算。

出示:分数除以整数,等于分数乘这个整数的倒数。

还有需要注意的地方吗?

生:有,除数不能为0。

师:谁能把分数除以整数的计算法则用自己的话来说一说?

完善算法:分数除以整数(0除外),等于分数乘这个整数的倒数。

⑥那象这样的分数除以整数的题目在计算时要注意些什么?

生:要约分!结果最简。除号要变成乘号!

三、巩固练习

学生独立完成

四、课堂小结

1、这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?(学生总结)

板书设计:

分数除以整数

最新沪教版五年级上册数学教案模板5

教学目标:

1、在涂一涂、算一算等活动中,探索并理解分数除法的意义。

2、引导学生探索并掌握分数除以整数的计算方法,并能正确计算。

3、能够运用分数除以整数的方法解决简单的实际问题。

教学重点:

引导学生探索并掌握分数除以整数的计算方法,并能正确计算。

教学难点:

1、探索分数除以整数的计算方法。

2、能够运用分数除以整数的方法解决简单的实际问题。

教学流程:

一、 创设情境 提出问题

1、把一张纸的 4/7平均分成2份,每份是这张纸的几分之几?

2、把一张纸的 4/7 平均分成3份,每份是这张纸的几分之几?

【设计意图:创设分长方形纸这一情境,旨在一上课就把学生带入思考的空间,抓住他们的学习状态。】

二、 自主探究 小组交流

(教师指导学生自主探究,尝试解决以上两个问题,同桌之间交流想法)

自主学习提示

1. 利用手中的的学习纸,涂一涂,算一算,尝试解决这两个问题。

2. 同桌之间说一说彼此的想法。

3. 有困难的同学,可以借助课本第25页的提示,完成这两个问题。

【设计意图:在本环节教师指导学生自主学习,发挥学生探究主体性,对于多数学生而言教师不要过多提示,主要指导学困生完成探究任务。】

三、 交流释疑

1、 初步感知分数除法 把一张纸的4/7平均分成2份,每份是这张纸的几分之几? 请同学们拿出图(一)来涂一涂。

交流:为什么要这样涂,每份是这张纸的几分之几呢? 还有不同的涂法吗? 能根据这个过程列出一个除法算式吗? 这个除法算式和以前学的除法有什么不同? 这就是这节课我们要学习的分数除法。(板书)

【设计意图:通过涂一涂的活动,在教师的引导下,让学生列出除法算式,使学生初步感知分数除法的意义。】

2、 初探算法 把一张纸的4/7平均分成3份,每份是这张纸的几分之几?

请大家在图(二)的上面涂一涂。

交流:(展示学生不同的涂法) 同学们是把长方形纸的七分之四平均分成了三份,再把其中一份涂上颜色。 谁能根据这一过程列出一个算式。 怎样才能算出得数呢?

(师提问:计算时为什么要用 3-1/3?)

观察3和1/3 有什么关系,由除以3变成乘3的倒数 ,是不是除以一个整数就可以乘它的倒数呢?我们来验证一下。

(教师出示三组算式)

1/3÷5, 4/5÷3, 1/3÷5 指生口算。

让学生观察每一组算式,说一说发现了什么? 根据这三组算式再结合上一道题,你认为分数除以整数可以怎样计算? (学生口述算法后)

【设计意图:分数除以整数的计算方法在本节课既是教学的重点,又是难点,为了使学生更好的掌握这部分知识,我先让学生通过涂一涂,进一步感知分数除法的意义,初步感知分数除以整数的计算方法,然后提出是不是除以一个整数就可以乘它的倒数呢?通过三组算式来验证提出的假设,这样让学生在教师的引导下,亲身经历了知识形成的全过程,突破了教学重难点。】

四、实践应用

1、算一算

9/10÷30 15/16÷20 14/15÷21 8/9÷6 5/6÷15

2、填一填

师:学会了知识就要灵活的运用,这道题你们能填上吗? 学生独立在书上第26页填一填,想一想。 集体订正。

3、解决问题。

师:为了使我们的校园更整洁,学校给我们各班划分了卫生区,这一周轮到第一组负责卫生区的卫生,老师想卫生区的四分之三平均分给四个人来负责,你们能算出每个人负责整个卫生区的几分之几吗? 学生在练习本上列式解答。 指生汇报完成情况。 运用分数除法能解决生活中的很多问题呢,谁能像老师这样来说一说生活中的问题,让大家解决。

(指生口头编题,其他学生解决)

【设计意图:通过形式多样、难易程度适当的习题,让学生在有层次的练习中巩固本节课的知识,使学生的思维得到发展。】

五、课堂总结

学生谈一谈本节课的收获。 同学们,这节课你们过的快乐吗?学习本来就是一件快乐的事,老师希望今后你们能快乐的学习,快乐的成长。

六、布置作业

22页练一练

七、板书设计

分数除法(一) ——分数除以整数 分数除以整数的计算方法:除以一个整数(零除外),等于乘这个整数的倒数。