冀教版小学二年级数学上册教案最新文案

秦风学

冀教版小学二年级数学上册教案最新1

教学目标:

1.使学生初步掌握“求一个数比另一个数多(或少)百分之几”的应用题的分析方法,并能正确解答此类应用题.

2.进一步提高分析、比较、解答应用题的能力,培养认真审题的好习惯.

教学重点:

掌握“求一个数比另一个数多(或少)百分之几”的应用题的分析方法,并能够正确列式解答.

教学难点:

掌握“求一个数比另一个数多(或少)百分之几”的应用题的分析方法,并能够正确列式解答.

教学过程:

一、复习准备

(一)求一个数是另一个数的百分之几用什么方法?解答这类应用题的关键是什么?

(二)口答,只列式不计算.

1.5是4的百分之几?4是5的百分之几?

2.甲数是50,乙数是40,甲数比乙数多多少?甲数比乙数多的是乙数的百分之几?

3.甲数是48,乙数是64,甲数比乙数少多少?甲数比乙数少的是甲数的百分之几?

(三)应用题

盒子中有45立方厘米的水,结成冰后,冰的体积约为50立方厘米。

冰的体积是原来水的体积的百分之几?

(四)引入新课

如果把、问题改为:冰的体积比原来水的体积增加了百分之几?该怎样解答呢?今天我们继续学习百分数应用题.

二、新授教学

(一)教学例题

例.盒子中有45立方厘米的水,结成冰后,冰的体积约为50立方厘米。

冰的体积比原来水的体积增加了百分之几?

1.读题,理解题意.

2.比较:例题与复习题有什么异同?

3.讨论:“冰的体积比原来水的体积增加了百分之几?”什么意思?(画图理解)

教师板书:多出来的部分占原计划的百分之几.

4.列式计算

(50-45)÷45 =5÷45 ≈0.111 =11、1%

5.思考:这道题还有其他解法吗?

50÷45-1 ≈111、1-1 =11、1%

提问:为什么要减去1?

(二)反馈

1.把例题中的问题改成“水比冰体积少百分之几?”该怎样解答?

思考:这道题与例题有什么相同的地方?有什么不同的地方?

2.一个乡去年原计划造林12公顷,实际造林比原计划多2公顷,实际造林比原计划造林多百分之几?3.一个乡去年原计划造林12公顷,实际造林比原计划多2公顷,实际造林比原计划造林少百分之几?

三、巩固练习

(一)分析下面每个题的含义,然后列出文字表达式.

1.今年的产量比去年的产量增加了百分之几?

2.实际用电比计划节约了百分之几?

3.十月份的利润比九月份的利润超过了百分之几?

4.1999年的电视机价格比1998年降低了百分之几?

5.现在生产一个零件的时间比原来缩短了百分之几?

6.十一月份比十二月份超额完成了百分之几?

(二)只列式不计算.

1.某校有男生500人,女生450人,男生比女生多百分之几?

2.某校有男生500人,女生450人,女生比男生少百分之几?

3.一种机器零件,成本从2.4元降低到0.8元,成本降低了百分之几?

4.一种机器零件,成本从2.4元降低了0.8元,成本降低了百分之几?

5.某工厂计划制造拖拉机550台,比原计划超额完成了50台,超额了百分之几?

(三)思考

男生比女生多20%,女生就比男生少().

四、课堂小结

通过今天的学习,你有哪些收获?

五、课后作业

1.我国第一大岛台湾岛面积约35760平方千米,第二大岛海南岛面积约是32200平方千米.台湾岛的面积比海南岛大百分之几?(百分号前面的数保留一位小数)

2.工程队原计划一周修路24千米,实际修了28千米.实际修的占原计划的百分之几?实际比原计划多修百分之几?

冀教版小学二年级数学上册教案最新2

教学目标:

1、在具体的情境中理解“增加百分之几”或“减少百分之几”的意义,加深对百分数意义的理解。

2、能计算出实际问题中“增加百分之几”或“减少百分之几”,提高与用数学解决实际问题的能力。

3、在解决问题的过程中体会百分数与现实生活的密切联系。

教学重点:

在具体的情境中理解“增加百分之几”或“减少百分之几”意义。

教学难点:

能计算出实际问题中“增加百分之几”或“减少百分之几”,提高运用数学解决实际问题的能力。

教学关键:

充分利用学生已有的知识基础,集合具体的实例让学生理解“增加百分之几”或“减少百分之几”的意义。

教学过程:

一、复习引入

1、复习

师:关于百分数,你们已经学过那些知识?

指名回答,引导学生回忆已学的有关百分数的知识。根据学生的回答,教师板书

百分数的意义

小数、百分数、分数之间的互化

百分数的应用

利用方程解决简单的百分数问题

2、引入

师:从这节课开始,我们继续学习有关百分数的知识。

二、探索新知

1、创设情景,提出问题

盒中有45立方厘米的水,结成冰后,冰的体积约为50立方厘米。冰的体积比原来水的体积约增加了百分之几?

根据这一情景,你能获得哪些信息?

指名回答,引导学生认识“水结成冰,体积会增加”这种物理现象。

师:你认为“增加百分之几”是什么意思?

指名回答,如果学生感到困难,教师可以通过画以下线段图帮助学生理解“增加百分之几”的意思是“冰的体积比原来水的体积多的部分是水体积的百分之几”

师:你能独立解决这一问题么?那就请你试一试。

2、自主探索解决问题

(1)自主探索。

让学生独立思考,解决情景图中提出的问题。教师巡视,及时了解学生中典型的算法。

( 2)合作交流。

指名板演,学生可能会提供以下两种算法

方法1 :(50-45)÷45

=5÷45

≈11%

方法2:50÷45=111%

111%-100%=11%

全班交流时,教师要让学生说一说具体的想法。通过交流,引导学生认识

方法1:先算增加了多少立方厘米,再算增加了百分之几。

方法2:先算冰的体积是原来水的体积的百分之几;再算增加百分之几。

3、即时练习。

先让学生独立解决问题,再组织全班学生交流。全班交流时,教师重点引导学生理解“降低百分之几”的意义。在本题中,“降低百分之几”的意思是降低的钱数占原来的百分之几。

三、巩固练习

指导学生完成课本练一练中的第1题至第5题。

免责声明:除正式文件通知外,好研网所有文章及所有评论只代表作者个人观点,不代表好研网及海南省教育研究培训院任何观点,所有文章文责自负,若有任何非法及不当信息,请与我们联系,我们会在第一时间作出相应的处理。

冀教版小学二年级数学上册教案最新3

教学内容:

第十一册,百分数的应用。

教学目标:

1.通过对比,使学生沟通分数应用题和百分数应用题的联系和区别,使学生理解和掌握“求一个数是另一个数的百分之几”的应用题的解题思路和方法。

2.让学生在自主探索、合作交流的过程中理解百分率的意义,探求百分率的计算方法并学会计算。

3.让学生在具体的情境中感受百分数来源于实际,培养学生用数学的眼光观察生活的意识,在应用中体验数学的价值。

教学重点:

掌握简单的百分数应用题的计算方法。

教学难点:

探索百分率的意义和计算方法。

教学过程:

一、开展活动,产生问题。

1.师:同学们,上课前老师想问大家一个问题。土豆能浮在水上吗?

(边说边做)老师这里有一杯凉开水,另一杯凉开水中有一些盐,如果教师把同一只土豆分别放入杯中,观察发现了什么?

2.师:你能根据老师刚才的实验,提出相关的数学问题吗?

生提,师随机板书,如:盐占盐水的几分之几?这个问题同学们会解答吗?

(板书提供数据:盐80克,水170克)

现在能解答吗?指名口答。80÷(170+80)=80÷250 =8/25

3.小结:这是我们以前学过的求一个数是另一个数的几分之几的应用题,这类题的解答方法是──一个数÷另一个数。

二、探索新知

(一)如果求“盐占盐水的百分之几”该怎样解答呢?(生尝试)

1.与前面的算法比较一下,你想说什么?(引导学生比较异同)

3.师小结:它们的解法是相同的,都是用一个数÷另一个数,只是这类百分数应用题的结果要用百分数表示。

(二)百分率

1.师:通过刚才的计算,我们知道盐占盐水的32%。生活中,盐占盐水的百分之几一般叫含盐率。(板书:含盐率)揭题,今天这节课我们就来学习百分率的应用。(板书课题)

反问:什么叫含盐率?怎样求含盐率?

师:计算百分率的公式通常这样写:含盐率=盐的重量/盐水的重量×100%(板书)

同学们,对这个公式有什么不清楚的地方吗?(解释:为什么×100%)

2、出示例题

一号杯中:倒入200克清水中放入10克糖。

二号杯中:倒入200克清水中放入20克糖。

师:你会求这两杯糖水的含糖率吗?含糖率=糖的重量/糖水的重量×100%(板书)

3、想想这两杯糖水的口味会怎样?谁愿意尝一尝。为什么?

因为含糖率9.5%比0.5%大,说明了什么?含糖率越高,糖水就越甜。

三、知识迁移、完善揭题。

1、 师:百分率在我们生活中是无处不在的,除了含糖率、含盐率外,你还能举出一些吗?老师这里也收集了一些。

读一读

实行科学种田,播种前需要进行种子发芽实验,计算发芽率;

用花生仁、油菜籽等榨油,可计算出油率;

每次考试后,老师要了解本班的及格率、优秀率;

护林工人了解小树苗的成活情况,可计算成活率;

工厂检验所生产零件的质量情况,需计算合格率;

根据学生每天的出勤情况,可计算出勤率;

调查学生作业的完成质量,可计算正确率;……

2.小组活动:请大家组成四人小组,每人挑一个你感兴趣的百分率说说它表示什么意思,并尝试着像老师一样编一道求百分率的应用题,并算出结果。学生讨论后交流。

四、比赛、调查、应用延伸

(一)只列式,不计算

1、加工400件产品,经检验,合格的有390件,求这批产品的合格率。

2、六(1)班今天有48人到校,2人事假,求六(1)班今天的出勤率。

3、某电视台调查了500个家庭,有462个家庭收看该电视台的节目,求该电视台的收视率。

(二)判断

(1)我校五年级共有100名学生,今天缺勤2人,今天五年级学生的出勤率为98%。

(2)林场种了杨树100棵,成活了98棵,杨树的成活率是98%棵。

(3)一批零件的合格率为85%,那么这批零件的不合格率一定是15%。

(4)工厂加工了105个零件,合格率达100%,则这批零件有100个合格。

(5)小麦的出粉率达到100%。

冀教版小学二年级数学上册教案最新4

教学目标:

1.使学生理解成数和折扣的含义,以及成数与分数、百分数之间的关系;会解答有关成数的应用题。

2.提高学生分析、解答应用题的能力,发展学生思维的灵活性。

重点难点:

理解成数和折扣的含义;理解成数与分数、百分数的含义。

教学过程:

一、复习准备

1.把下列各数化成百分数。

2.李庄去年种小麦50公顷,今年种小麦60公顷。今年比去年多种小麦百分之几?

3.小华家承包了一块菜田,前年收白菜41.6吨,去年比前年多收了25%。去年收白菜多少吨?

师述:农业收成,有时用成数来表示。今天我们就来学习有关成数的应用题。

板书:百分数应用题

二、学习新课

1.电脑出示例题:商场里每台电视机的进价是1800元,售价加两成,每台电视机的售价定为多少元?

2、成数的含义。

师述:什么是成数呢?在五年级我们学过“几成”就是十分之几,如“一成”就是十分之一,它相当于10%。

(1)口答

“三成”是十分之(),改写成百分数是()。

“三成五”是十分之(),改写成百分数是()。

(2)七成  二成五  五成相当于百分之多少?

3、售价加两成是什么意思?求售价应先算出什么?

还可以怎样算?学生交流解题思路。

4.出示例2。

例2曹庄乡去年产棉花37.4万千克。今年遭受虫灾,减产一成五,今年大约产棉花多少万千克?

(1)学生读题,理解题中的数学信息。

(2)减产一成五是什么意思?

(3)学生独立解答,指名学生说解题思路。

师述:在列式计算时,我们可以直接把“成数”化成百分数,用百分数进行列式计算。

板书设计:

37.4×(1-15%)

=37.4×0.85 =31.79(吨)

答:今年产棉花31.79万千克。

冀教版小学二年级数学上册教案最新5

教学内容:冀教版六年级上册第70-71页

教学目标:

1.使学生理解成数和折扣的含义,以及成数与分数、百分数之间的关系;会解答有关成数的应用题。

2.提高学生分析、解答应用题的能力,发展学生思维的灵活性。

教学重点和难点

理解成数和折扣的含义;理解成数与分数、百分数的含义。

教学过程设计

(一)复习准备

1.李庄去年种小麦50公顷,今年种小麦60公顷。今年比去年多种小麦百分之几?

2.小华家承包了一块菜田,前年收白菜41.6吨,去年比前年多收了25%。去年收白菜多少吨?

师述:农业收成,有时用成数来表示。今天我们就来学习有关成数的应用题。

板书:百分数应用题

(二)学习新课

1.电脑出示例题:商场里每台电视机的进价是1800元,售价加两成,每台电视机的售价定为多少元?

2、成数的含义。

师述:什么是成数呢?在五年级我们学过“几成”就是十分之几,如“一成”就是十分之一,它相当于10%。

(1)口答:

“三成”是十分之( ),改写成百分数是( )。

“三成五”是十分之( ),改写成百分数是( )。

(2)七成 二成五 五成相当于百分之多少?

3、售价加两成是什么意思?求售价应先算出什么?

还可以怎样算?学生交流解题思路。

4.出示例2。

例2:曹庄乡去年产棉花37.4万千克。今年遭受虫灾,减产一成五,今年大约产棉花多少万千克?

(1)学生读题,理解题中的数学信息。

(2)减产一成五是什么意思?

(3)学生独立解答,指名学生说解题思路。

师述:在列式计算时,我们可以直接把“成数”化成百分数,用百分数进行列式计算。

板书:

37.4×(1-15%)

=37.4×0.85

=31.79(吨)

答:今年产棉花31.79万千克。

3.练习。

小丽家承包了一块地,前年收小麦8000千克,去年比前年增产一成半。去年收小麦多少千克?

6.课堂小结。

今天我们学习了哪些知识?

师述:今天我们学习了有关“成数”的知识,知道了“成数”的含义,以及“成数”与分数和百分数之间的关系,并且学习了有关“成数”的一些实际的、简单的应用题。

(三)巩固反馈

1.填空:

(1)某县今年棉花产量比去年增产三成。这句话的意思是( )是( )的30%。

(2)一块麦地,改用新品种后,产量增加了四成五。这句话的意思是改用新品种后产量是( )的( )%。

2.把下面的百分数改写成“成数”。

75% 60% 42% 100% 95%