苏教版数学一年级下册教案及反思范文

张东东

2021苏教版数学一年级下册教案及反思范文1

教学目标:

知识与技能:结合解决问题的过程,探索“先乘除,后加减”的运算顺序,并能正确计算有关的两步式题。

过程与方法:通过“小熊购物”的问题情境,发展学生提出问题和解决问题的能力。

情感态度与价值观:体会数学与实际的密切联系,进一步培养学生的合作交流能力。

教学过程:

一、创设情境,激发兴趣。

1、导入语:(课件播放鞭炮声)今天真是个好日子,噼噼啪啪的鞭炮声响起来,原来呀,是猪八戒的超市开张了,咱们一起去逛逛,好吗???

2、(出示情境图)师:这是超市里的食品专柜,从图中我们可以知道些什么?

如果要买两种东西,你能提出数学问题吗?

[评析]:问题是生长新思想、新方法、新知识的种子。教师让学生学会看图,从中获取需要的数学信息,引发学生提出问题,从而对问题的解决方法进行探索,培养了学生提出问题的能力

二、探索交流,构建新知。

(一)探索“乘加”的运算顺序。

1、小熊也来了,看看他要买什么?小熊:我要买4个面包和一瓶饮料需要多少钱?(师在黑板上贴出4个面包和一瓶饮料)

师:买4个面包和一瓶饮料需要多少钱呢?请每个同学先自己想一想怎样算,然后围成四人小组,把你的想法告诉小组里的同学,并认真听一听别人是怎样想的。

小组活动后全班交流,(师相应板书)

①3×4=12(元),12+6=18(元)

②4×3=12(元),12+6=18(元)

③3+3+3+3+6=18(元)

④3×4 +6=18

⑤6+3×4=18

师:这些算式,它们有什么相同和不同?

[评析]把所有的算法都板书出来,使每个人都知道;并让学生说一说自己算式的思想,以重复、确认、澄清他们的想法,比较算式的相同和不同,引起思维的碰撞,使学生从更深的角度重新认识这些算式,这些都是促进讨论深入开展的有效做法。

2、脱式计算及运算顺序的提出

师:算式3×4+6,你们是怎么算的?

生:我是先算出日记本的价钱,3×4是12元,再加上一瓶饮料价钱6元,所以得数是18元。

师:你们都能很快地算出结果,真好!老师也来算一算,3×4得12,然后加6,可我忘了用谁加6了,怎么办呢?

生:是先把12记下来,这样就不会忘记了。

师:记在哪里更好?

生:就记在3×4的下面吧。

教师板书脱式计算过程:

3×4+6

=12+6

=18(元)

师:这就是脱式计算。

[评析]在教学脱式计算时,传统的教学是教师边示范、边讲解脱式计算的步骤与注意事项,然后让学生练习计算。学生是被动地用老师给的方法去做,并没有产生对这种方式的需要,所以应用起来只是按部就班、机械地记忆。怎样让学生产生学习新知识的需要,更好地探索、接受新知呢?出于这样的考虑,教师进行了新的教学实践:老师遇到了计算的困难,记不住前一步的结果,怎么办呢?激发学生对新的计算方式的需要。有的学生提出把前一步的结果先记下来,有的提出记在算式的下面更好一些。学生又一次体会到学习的快乐以及帮助老师的成功感。

3、独立进行脱式计算6+3×4

板书各种不同的算法,有:

6+3×4 6+3×4 6+3×4

=6+12 =12+6 =9×4

=18(元) =18(元) =36(元)

师:以上这些算法,你们有不同意见吗?

(学生先独立思考,再在小组内说一说。)

如果你认为你们大家的对,谁愿意站出来说服他?

生3:我认为生1就是不对,不能先算加法,因为我爸爸告诉过我,有加有乘应先算乘法。

生4:我还知道,想先算加法要在有小括号时,要不然,就得先算乘法。

生5:我们用3×4先算出的是4个面包的价钱,再加上一瓶饮料价钱6元,正好就是18元了。那生1,你是先算什么的?

师:那你们再想想,第二种写法对不对?

4、引导小结:加法又有乘法,先算乘法再算加法(板书)。

[评析]教师敢于暴露学生做题中两种不够成熟的思考方法,通过学生生成的资源,让他们在阐述和争辨中进行分析,明晰解题思路,完善解题方法,教师只在关键处给予引导,在情境中使学生再次理解了“减乘”的混合运算,应该“先算乘,再算加”的合理性。在此,学生的学和教师的导得到了较为和谐的统一。更重要的是,通过自主探究,学生比较、理解、思考、表达等能力以及自主学习的精神都得到发展。

(二)探索“乘减”的运算顺序。

1、师:大家看,又有谁来到了百货店?

(课件播放小熊来到百货店及说的话)小熊:我有20元钱,想买3包饼干应找回多少钱?(师在黑板上贴出该问题)

同桌两人,右边的同学当售货员,左边的同学拿出20元钱向售货员购买3包饼干,然后和你的同桌说一说怎样算出应找回多少钱。(最后集体交流,贴出“有减法又有乘法,先算乘法再算减法)

师小结:我们刚才通过“小熊购物”学会了两步计算,有乘有加时,先算乘法再算加法,有乘有减时先算乘法再算减法。

三、巩固应用,拓展提高。

1、变式练习:同学们帮助小熊解决了问题,你们真棒!现在也给你一个机会,可以任选超市中的两种食品,每种可以是一件,也可多件,但总钱数不能超过20元。将你的解决方法列成一个算式,并计算。

2、试一试(2)

7×3+5 50-4×5 7+6×2

(1)指名板演,其余学生独立完成在练习纸上;

(2)反馈交流时,发现错误资源及时呈现进行集体评议;

(3)你们认为递等式计算需要注意什么?

[评析]板演,这一古老、传统、而又有效的教学方式成为了本堂课的又一亮点。一方面,它充分展现了学生的思维,能让教师了解学生对运算技能的掌握情况;另一方面,它又为学生提供了评价、交流的平台,实现错误资源价值的化的利用。

3、数学游戏:结合小熊购物图,说说上题中各算式的意思,并猜猜同桌的想法。

四、回顾反思,梳理总结。

师:今天我们学会了什么?你最喜欢哪个活动,为什么?

2021苏教版数学一年级下册教案及反思范文2

课题:加法的意义和加法交换律(小学数学人教版第八册)

授课教师:王晓华(六里坪镇财神庙小学)

教学内容:教材第48、49页的例1和例2,练习十一的第1、2题。

教学要求:

1、使学生在已有加法知识的基础上,理解并概括加法的意义和加法交换律,能从感性认识上升到理性认识。

2、培养学生初步的归纳推理能力。

教学重点:加法交换律

教学难点:使学生在理解的基础上自己概括出加法的意义和归纳出加法交换律。

教学准备:小黑板

教学方法:启发式

教学过程

一、课题提示

我们学了几年数学,几乎每天都与加法打交道,谁能说说什么是加法吗?今天我们学习加法的意义。(板书课题:加法的意义)

二、教学新课

(一)、教学加法的意义。

1、出示例1。学生读题,指名说已知条件和问题,老师画线段图。

2、独立解答。指名学生说自己所列的算式及其得数(在图下板书)然后问:为什么要用加法算?

3、引导看线段图,老师辅以手势说明,我们用加法把137和357合并成了494这一个数,可见加法是一种运算。加法是一种怎样的运算呢?

4、说出式中的各部分的名称。什么是加数?什么是和?

5、刚才的加法中,加数中不含0;如果含有0,得多少呢?举例:7+0=7,0+7=7,0+0=0。…,得出结论,一个数加上0,还得原数。

(二)教学加法交换律。

1、看例1线段图,刚才我们求北京到济南的铁路长。如果要求济南到北京的铁路长还可以怎样列式?

2、为什么用加法算?

3、比较两个算式有什么样的关系?(板书:在两个算式间画上“=”)有什么相同点和不同点?

4、如果其他任意两个数相加时,交换一下两个加数的位置,相加的和是不是也不变呢?

5、出示例2两组式子,引导学生比较。讨论:两组算式有什么共同点?归纳并板书加法交换律。

6、加法交换律除了用文字语言进行叙述外,还可以用字母写成的式子来表示。如果用字母a和b分别表示两个加数,怎样表示加法交换律?

说一说a和b分别表示什么?比较一下文字叙述和字母表示的式子,哪一种简明好记。

7、巩固练习:教材第49页的“做一做”。(出示小黑板)

(1)填空。

①把两个数合并成( )个数的( ),叫着加法;相加的两个数叫做( ),加得的数叫做( )。

②86+124=( )+86 ( )+25=25+a

③两个数相加,交换它们的位置,它们的( )不变。

④418+382=382+418,这是应用了加法的( )律。

⑤一个数加上( ),是原数。

(2)判断。(对的打“√”,错的打“×”)

①任意两个数的和,一定比这两个数大。( )

②下面哪些算式符合加法交换律?

430+270=280+420( ) 28+a=a+28

570+250=250+570( ) 40+30+10=40+10+30( )

③用字母a和b分别表示两个加数,加法交换律写成:a+b=a+c。( )

8、想一想,我们以前在哪里曾经用加法交换律?(加法验算)

三、课堂小结

说一说加法的意义和加法交换律的含义。

四、作业布置

练习十一的第1、2题。

附板书:

加法的意义和加法交换律

例1(略) 7+0=7 0+7=7 0+0=0

(画示意图) 一个数加上0,还得原数

137+357=494(千米)

137+357=494(千米) 137+357=357+137

加数 加数 和 18+17㈡17+18

答:(略) 两个数相加,交换加数的位置,它们的和不变,这就是加法交换律。

把两个数合并成一个数的运算,叫做加法。 a+b=b+a

2021苏教版数学一年级下册教案及反思范文3

教学内容:

P34-35

教学目标:

1、探索并掌握“0和任何数相乘都等于0”这个规律

2、结合具体情境,能应用所学知识解决学习中的简单问题,逐步培养学生的应用意识和能力。

3、 经历与他人交流各自算法的过程,使学生逐步学会合作学习。

教学重点:

1、探索并掌握“0和任何数相乘都等于0”这个规律。

2、探索并掌握被乘数中间、末尾有“0”的乘法。

教学过程:

一、“0”的乘法

让学生口答“0×5=?”并说说是怎么想的。

再让学生举出类似的例子,学生们举了许多例子,其中还提出了“0×0=0”,然后引导学生总结出:0乘任何数都得0,这一结论。

二、被乘数中间、末尾有“0”的乘法。

1、解决“130×5=?”

(1)独立思考,尝试解决问题。

(2)在小组中说一说怎么算的,计算时应注意些什么。

(3)全班交流计算方法。

注意让学生理解算理。学会用较为简洁的乘法竖式的书写方法。

学生可能难以独立写出来,教师要指导学生学习这种写法。

2、解决“402×3=?”

让学生先尝试独立计算,再让学生说说各自的想法。体验算法的多样化。三、应用知识,解决实际问题。

练一练第1、3题由学生独立完成,集体订正。

练一练第2题,让学生先独立完成,再反馈交流。

三、课堂小结

2021苏教版数学一年级下册教案及反思范文4

教学目标

1.使学生了解本金、利息、利率、利息税的含义.

2.理解算理,使学生学会计算定期存款的利息.

3.初步掌握去银行存钱的本领.

教学重点

1.储蓄知识相关概念的建立.

2.一年以上定期存款利息的计算.

教学难点

“年利率”概念的理解.

教学过程

一、谈话导入

教师:过年开心吗?过年时最开心的事是什么?你们是如何处理压岁钱的呢?

教师:压岁钱除了一部分消费外,剩下的存入银行,这样做利国利民.

二、新授教学

(一)建立相关储蓄知识概念.

1.建立本金、利息、利率、利息税的概念.

(1)教师提问:哪位同学能向大家介绍一下有关储蓄的知识.

(2)教师板书:

存入银行的钱叫做本金.

取款时银行多支付的钱叫做利息.

利息与本金的比值叫做利率.

2.出示一年期存单.

(1)仔细观察,从这张存单上你可以知道些什么?

(2)我想知道到期后银行应付我多少利息?应如何计算?

3.出示二年期存单.

(1)这张存单和第一张有什么不同之处?

(2)你有什么疑问?(利率为什么不一样?)

教师总结:存期越长,国家就可以利用它进行更长期的投资,从而获得更高的利益,所以利息就高.

4.出示国家最新公布的定期存款年利率表.

(1)你发现表头写的是什么?

怎么理解什么是年利率呢?

你能结合表里的数据给同学们解释一下吗?

(2)小组汇报.

(3)那什么是年利率呢?

(二)相关计算

张华把400元钱存入银行,存整存整取3年,年利率是2.88%.到期时张华可得税后利息多少元?本金和税后利息一共是多少元?

1.帮助张华填写存单.

2.到期后,取钱时能都拿到吗?为什么?

教师介绍:自1999年11月1日起,为了平衡收入,帮助低收入者和下岗职工,国家开始征收利息税,利率为20%.(进行税收教育)

3.算一算应缴多少税?

4.实际,到期后可以取回多少钱?

(三)总结

请你说一说如何计算“利息”?

三、课堂练习

1.小华今年1月1日把积攒的零用钱500元存入银行,定期一年.准备到期后把利息

捐赠给“希望工程”,支援贫困地区的失学儿童.如果年利率按10.98%计算,到明年1月1日小华可以捐赠给“希望工程”多少元钱?

2.赵华前年10月1日把800元存入银行,定期2年.如果年利率按11.7%计算,到今年10月1日取出时,他可以取出本金和税后利息共多少元钱?下列列式正确的是:

(1)800×11.7%

(2)800×11.7%×2

(3)800×(1+11.7%)

(4)800+800×11.7%×2×(1-20%)

3.王老师两年前把800元钱存入银行,到期后共取出987.2元.问两年期定期存款的利率是多少?

四、巩固提高

(一)填写一张存款单.

1.预测你今年将得到多少压岁钱?你将如何处理?

2.以小组为单位,填写一张存单,并算一算到期后能取回多少钱?

(二)都存1000元,甲先存一年定期,到期后连本带息又存了一年定期;乙直接存了二年定期.到期后,甲、乙两人各说自己取回的本息多.你认为谁取回的本息多?为什么?

五、课堂总结

通过今天的学习,你有什么收获?

六、布置作业

1.小华20--年1月1日把积攒的200元钱存入银行,存整存整取一年.准备到期后把税后利息捐赠给“希望工程”,支援贫困地区的失学儿童.如果年利率按2.25%计算,到期时小华可以捐赠给“希望工程”多少元钱?

2.六年级一班20--年1月1日在银行存了活期储蓄280元,如果年利率是0.99%,存满半年时,本金和税后利息一共多少元?

3.王洪买了1500元的国家建设债券,定期3年,如果年利率是2.89%到期时他可以获得本金和利息一共多少元?

七、板书设计

百分数的应用

本金 利息 利息税 利国利民

利率:利息与本金的比值叫利率.

利息=本金×利率×时间

探究活动

购物方案

活动目的

1.使学生理解生活中打折等常见的优惠措施,并能根据实际情况选择最佳的方案与策略.

2.通过小组合作,培养学生的合作意识及运用所学知识解决实际问题的能力.

3.培养学生创新精神,渗透事物是对立统一的辩证唯物主义思想,使学生能够辩证、发展、全面地对待实际生活中的问题.

活动过程

1.教师出示价格表

A套餐原价:16.90元 现价:10.00元

B套餐原价:15.40元 现价:10.00元

C套餐原价:15.00元 现价:10.00元

D套餐原价:15.00元 现价:10.00元

E套餐原价:18.00元 现价:10.00元

F套餐原价:14.40元 现价:10.00元

学生讨论:如果你买,你选哪一套?

2.教师出示价格表

A套餐原价:16.90元 现价:12.00元

B套餐原价:15.40元 现价:10.78元

C套餐原价:15.00元 现价:12.00元

D套餐原价:15.00元 现价:12.00元

E套餐原价:18.00元 现价:13.50元

F套餐原价:14.40元 现价:12.24元

学生讨论:现在买哪一套最合算呢?

3.教师出示价格表

每套18.00元,冰淇淋7.00元.

第一周:每套16.20元;买一个冰淇淋回赠2元券.

第二周:降价20%;买一个冰淇淋回赠2元券.

第三周:买5套以上打七折;买一个冰淇淋回赠2元券.

学生讨论:

(1)你准备在哪一周买

(2)你打算怎么买?

(3)你设计方案的优点是什么?

2021苏教版数学一年级下册教案及反思范文5

教学目标:

1.进一步认识图形的旋转,探索图形旋转的特征和性质。

2.通过观察、想象、分析和推理等过程,独立探究、增强空间观念。

3.让学生体会图形变换在生活中的应用,利用图形变换进行图案设计,感受图案带来的美感和数学的应用价值。

教学重点:

理解、掌握旋转现象的特征和性质。

教学难点:

理解、掌握旋转现象的特征和性质。

教学过程:

一、情景导入

教师用课件演示:(1)钟表的转动;(2)风车的转动。

提问:观察课件的演示,你看到了什么?

学生在交流汇报时可能会说出

(1)钟表上的指针和风车都在转动;

(2)钟表上的指针和风车都是绕着一点转动;

(3)钟表上的指针沿着顺时针方向转动,风车沿着逆时针方向转动。

教师:像钟表上指针和风车都绕着一个点或一个轴转动的这种现象就是旋转。(板书课题:图形的旋转变换)

2.提问:旋转现象有几种情况?

生回答后板书。

3.师:在日常生活中你在哪些地方见到过旋转现象?学生自己举例说一说。

二、新课讲授

出示课本第83页例题1的钟面。

(1)观察,描述旋转现象。

观察:出示动画(指针从12指向1),请同学们仔细观察指针的旋转过程。

提问:谁能用一句话完整地描述一下刚才的这个旋转过程?

(教师引导学生叙述完整)

观察:出示动画(指针从1指向3)。

提问:这次指针又是如何旋转的?

观察:出示动画(指针从3指向6)。同桌互相说一说指针又是如何旋转的?

提问:如果指针从6继续绕点O顺时针旋转180会指向几呢?

(2)教师:根据我们刚才描述的旋转现象,想想看,要想把一个旋转现象描述清楚,应该从哪些方面去说明?

小结:要把一个旋转现象描述清楚,不仅要说清楚是什么在旋转,运动起止位置,更重要的是要说清楚旋转围绕的点,方向以及角度。

四、课堂练习

完成课本第85页练习二十一的第1~3题。

五、课堂小结

同学们,通过今天这节课的学习活动,我们知道要把一个旋转现象描述清楚,不仅要说清楚是什么在旋转,运动起止位置,更重要的是要说清楚旋转围绕的点,方向以及角度。

教学板书:

旋转

顺时针旋转

逆时针旋转

相对应的点到O点的距离都相等。

教学反思:

从学生的生活经验和已有的知识中学习数学、理解数学,让学生经理观察对比的思维过程,再通过交流,使学生对旋转运动的特点印象更加深刻,进而探索图形旋转的特征和性质,所以学习氛围更加浓厚。一部分学生对于旋转后的图形很难把握。