人教版数学中考考点梳理

刘莉莉

人教版数学中考考点梳理

一、平行线分线段成比例定理及其推论:

1.定理:三条平行线截两条直线,所得的对应线段成比例。

2.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。

3.推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条线段平行于三角形的第三边。

二、相似预备定理:

平行于三角形的一边,并且和其他两边相交的直线,截得的三角形的三边与原三角形三边对应成比例。

三、相似三角形:

1.定义:对应角相等,对应边成比例的三角形叫做相似三角形。

2.性质:(1)相似三角形的对应角相等;

(2)相似三角形的对应线段(边、高、中线、角平分线)成比例;

(3)相似三角形的周长比等于相似比,面积比等于相似比的平方。

说明:①等高三角形的面积比等于底之比,等底三角形的面积比等于高之比;②要注意两个图形元素的对应。

3.判定定理:

(1)两角对应相等,两三角形相似;

(2)两边对应成比例,且夹角相等,两三角形相似;

(3)三边对应成比例,两三角形相似;

(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角对应成比例,那么这两个直角三角形相似。

数学中考考点梳理

1.1菱形的性质与判定

菱形的定义:一组邻边相等的平行四边形叫做菱形。

菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。

菱形是轴对称图形,每条对角线所在的直线都是对称轴。

菱形的判别方法:一组邻边相等的平行四边形是菱形。

对角线互相垂直的平行四边形是菱形。

四条边都相等的四边形是菱形。

1.2 矩形的性质与判定

矩形的定义:有一个角是直角的平行四边形叫矩形。矩形是特殊的平行四边形。

矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。(矩形是轴对称图形,有两条对称轴)

矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。

对角线相等的平行四边形是矩形。

四个角都相等的四边形是矩形。

推论:直角三角形斜边上的中线等于斜边的一半。

1.3 正方形的性质与判定

正方形的定义:一组邻边相等的矩形叫做正方形。

正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。(正方形是轴对称图形,有两条对称轴)

正方形常用的判定:有一个内角是直角的菱形是正方形;

邻边相等的矩形是正方形;

对角线相等的菱形是正方形;

对角线互相垂直的矩形是正方形。

正方形、矩形、菱形和平行边形四者之间的关系(如图3所示):

梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形。

两条腰相等的梯形叫做等腰梯形。

一条腰和底垂直的梯形叫做直角梯形。

等腰梯形的性质:等腰梯形同一底上的两个内角相等,对角线相等。

同一底上的两个内角相等的梯形是等腰梯形。

数学中考考点

一. 线段的比

1. 如果选用同一个长度单位量得两条线段AB, CD的长度分别是m、n,那么就说这两条线段的比AB:CD=m:n ,或写成 .

2. 四条线段a、b、c、d中,如果a与b的比等于c与d的比,即 ,那么这四条线段a、b、c、d叫做成比例线段,简称比例线段.

3. 注意点:

①a:b=k,说明a是b的k倍;

②由于线段 a、b的长度都是正数,所以k是正数;

③比与所选线段的长度单位无关,求出时两条线段的长度单位要一致;

④除了a=b之外,a:b≠b:a, 与 互为倒数;

⑤比例的基本性质:若 , 则ad=bc; 若ad=bc, 则

二. 黄金分割

1. 如图1,点C把线段AB分成两条线段AC和BC,如果 ,那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比.

2.黄金分割点是美、最令人赏心悦目的点.

四. 相似多边形

¤1. 一般地,形状相同的图形称为相似图形.

2. 对应角相等、对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比.

五. 相似三角形

1. 在相似多边形中,最为简简单的就是相似三角形.

2. 对应角相等、对应边成比例的三角形叫做相似三角形.相似三角形对应边的比叫做相似比.

3. 全等三角形是相似三角的特例,这时相似比等于1. 注意:证两个相似三角形,与证两个全等三角形一样,应把表示对应顶点的字母写在对应的位置上.

4. 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比.

5. 相似三角形周长的比等于相似比.

6. 相似三角形面积的比等于相似比的平方.

六.探索三角形相似的条件

1. 相似三角形的判定方法:

一般三角形 直角三角形

基本定理:平行于三角形的一边且和其他两边(或两边的延长线)相交的直线,所截得的三角形与原三角形相似.

①两角对应相等;

②两边对应成比例,且夹角相等;

③三边对应成比例. ①一个锐角对应相等;

②两条边对应成比例:

a. 两直角边对应成比例;

b. 斜边和一直角边对应成比例.

2. 平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.

如图2, l1 // l2 // l3,则 .

3. 平行于三角形一边的直线与其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.

八. 相似的多边形的性质

相似多边形的周长等于相似比;面积比等于相似比的平方.

九. 图形的放大与缩小

1. 如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形; 这个点叫做位似中心; 这时的相似比又称为位似比.

2. 位似图形上任意一对对应点到位似中心的距离之比等于位似比.

◎3. 位似变换:

①变换后的图形,不仅与原图相似,而且对应顶点的连线相交于一点,并且对应点到这一交点的距离成比例.像这种特殊的相似变换叫做位似变换.这个交点叫做位似中心.

②一个图形经过位似变换后得到另一个图形,这两个图形就叫做位似形.

③利用位似的方法,可以把一个图形放大或缩小.