永州中考数学考点解析

王明刚

永州中考数学考点解析

(一)正方形定义、性质及判定.

1.定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.

2.性质:(1)正方形四个角都是直角,四条边都相等;

(2)正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;

(3)正方形的一条对角线把正方形分成两个全等的等腰直角三角形;

(4)正方形的对角线与边的夹角是45。;

(5)正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.

3.判定:

(1)先判定一个四边形是矩形,再判定出有一组邻边相等;

(2)先判定一个四边形是菱形,再判定出有一个角是直角.

4.对称性:正方形是轴对称图形也是中心对称图形.

(二)梯形的定义、等腰梯形的性质及判定.

1.定义:一组对边平行,另一组对边不平行的四边形是梯形.两腰相等的梯形是等腰梯

形.一腰垂直于底的梯形是直角梯形.

2.等腰梯形的性质:等腰梯形的两腰相等;同一底上的两个角相等;两条对角线相等.

3.等腰梯形的判定:两腰相等的梯形是等腰梯形;同一底上的两个角相等的梯形是等腰梯形;两条对角线相等的梯形是等腰梯形.

4.对称性:等腰梯形是轴对称图形.

(三)三角形的中位线平行于三角形的第三边并等于第三边的一半;梯形的中位线平行于梯形的两底并等于两底和的一半.

(四)线段的重心是线段的中点;平行四边形的重心是两对角线的交点;三角形的重心是三条中线的交点..

(五)依次连接任意一个四边形各边中点所得的四边形叫中点四边形

中考数学考点解析

1.点与圆的位置关系及其数量特征:如果圆的半径为r,点到圆心的距离为d,则

①点在圆上<===>d=r;②点在圆内<===>dd>r.

二.圆的对称性:

1.与圆相关的概念:

④同心圆:圆心相同,半径不等的两个圆叫做同心圆。

⑤等圆:能够完全重合的两个圆叫做等圆,半径相等的两个圆是等圆。

⑥等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。

⑦圆心角:顶点在圆心的角叫做圆心角.

⑧弦心距:从圆心到弦的距离叫做弦心距.

2.圆是轴对称图形,直径所在的直线是它的对称轴,圆有无数条对称轴。

3.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

说明:根据垂径定理与推论可知对于一个圆和一条直线来说,如果具备:

①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧。

上述五个条件中的任何两个条件都可推出其他三个结论。

4.定理:在同圆或等圆中,相等的圆心角所对弧相等、所对的弦相等、所对的弦心距相等。

推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.

中考数学考点

1.在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆。固定的端点O叫做圆心,线段OA叫做半径。

2.连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径。

3.圆上任意两点间的部分叫作圆弧,简称弧。圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。能够重合的两个圆叫做等圆。在同圆或等圆中,能够互相重合的弧叫做等弧。

4.圆是轴对称图形,任何一条直径所在直线都是它的对称轴。

5.垂直于弦的直径平分弦,并且平分弦所对的两条弧。

6.平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

7.我们把顶点在圆心的角叫做圆心角。

8.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。

9.在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等。

10.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧相等。

11.顶点在圆上,并且两边都与圆相交的角叫做圆周角。

12.在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。

13.半圆(或半径)所对的圆周角是直角,90°的圆周角所对的弦是直径。

14.如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆。

15.在同圆或等圆中,如果两个圆周角相等,他们所对的弧一定相等。

16.圆内接四边形的对角互补。

17.点P在圆外——d>r点P在圆上——d=r点P在圆内——d

18.不在同一直线上的三个点确定一个圆。

19.经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆,外接圆的圆心是三角形三条边垂直平分线的交点,叫做这个三角形的外心。

20.直线和圆有两个公共点,这时我们说这条直线和圆相交,这条直线叫做圆的割线。