初中数学知识点:分式的定义
分式的概念包括3个方面:
①分式是两个整式相除的商式,其中分子为被除式,分母为除式,分数线起除号的作用;
②分式的分母中必须含有字母,而分子中可以含有字母,也可以不含字母,这是区别整式的重要依据;
③在任何情况下,分式的分母的值都不可以为0,否则分式无意义。这里,分母是指除式而言。而不是只就分母中某一个字母来说的。也就是说,分式的分母不为零是隐含在此分式中而无须注明的条件。
分式有意义的条件:
(1)分式有意义条件:分母不为0;
(2)分式无意义条件:分母为0;
(3)分式值为0条件:分子为0且分母不为0;
(4)分式值为正(负)数条件:分子分母同号时,分式值为正;分子分母异号时,分式值为负 。◎ 分式的定义的知识对比
分式的区别概念:
分式与分数的区别与联系:
a.分式与分数在形式上是一致的,都有一条分数线,相当于除法的“÷”,都有分子和分母,都可以表示成
(B≠0)的形式;
b.分式中含有字母,由于字母可以表示不同的数,所以分式比分数更具有一般性;分数是分式中字母取特定值后的特殊情况。
整式和分式统称为有理式。
带有根号且根号下含有字母的式子叫做无理式。
无限不循环小数也是无理式
无理式和有理式统称代数式
初中数学知识点:分式的基本性质
1、分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
即
,
(C≠0),其中A、B、C均为整式。
2、分式的符号法则:一个分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。
3、约分:分数可以约分,分式与分数类似,也可以约分,根据分式的基本性质把一个分式的分子与分母的公因式约去,这种变形称为分式的约分。
4、通分:根据分式的基本性质,把分子、分母同时乘以适当的整式,把几个异分母的分式转化为与原来的分式相等的同分母的分式,叫做分式的通分。
分式的符号法则:一个分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。
约分:分数可以约分,分式与分数类似,也可以约分,根据分式的基本性质把一个分式的分子与分母的公因式约去,这种变形称为分式的约分。
分式的约分步骤:
(1)如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约去;
(2)分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去。
通分:根据分式的基本性质,把分子、分母同时乘以适当的整式,把几个异分母的分式转化为与原来的分式相等的同分母的分式,叫做分式的通分。 分式的通分步骤:先求出所有分式分母的最简公分母,再将所有分式的分母变为最简公分母;同时各分式按照分母所扩大的倍数,相应扩大各自的分子.
初中数学知识点:分式的乘除加减
分式乘除的解题步骤:
分式乘法:
(1)先确定积的符号:数出整个参与运算的式子中负号的个数,如果有偶数个负号,积为正;
如果有奇数个负号,积为负;
(2)计算分子与分子的积;
(3)计算分母与分母的积;
(4)把积中的分子,分母进行约分,化成最简分式或整式。
在解题时,这些步骤是连贯的。
分式除法
要注意两个变化:
一是运算符号的变化,由原来的除法运算变成乘法运算;
二是除式的分子、分母位置的变化,由原来的分子变成乘法中的分母,原来的分母变成乘法中的分子。
同学们也可以这样来理解这条法则:
两个分式相除,用被除式的分子乘以除式的分母,作为商的分子,用被除式的分母乘以除式的分子,作为商的分母。
这样,就和分式的乘法法则在表述形式上相近了,就好记忆些。
基本步骤:
(1)先确定积的符号:数出整个参与运算的式子中负号的个数,如果有偶数个负号,积为正;
如果有奇数个负号,积为负;
(2)计算被除式的分子与除式的分母的积,作为商的分子;
(3)计算被除式的分母与除式的分子的积,,作为商的分母;
(4)把商中的分子,分母进行约分,化成最简分式或整式。
此法,有点十字相乘的思想。就像比例的计算,内项之积为分子,外项之积为分母。
分式的加减法则:
同分母的分式相加减,分母不变,把分子相加减;
异分母的分式相加减,先通分,变为同分母分式,然后再加减。
分式的加减要求:
①分式的加减运算结果必须是最简分式或整式,运算中要适时地约分;
②如果一个分式与一个整式相加减,那么可以把整式看成是分母为1的分式,先通分,再进行加减。