长沙数学中考的考点
角的平分线
定理1:在角的平分线上的点到这个角的两边的距离相等
定理2:到一个角的两边的距离相同的点,在这个角的平分线上
角的平分线是到角的两边距离相等的所有点的集合
等腰三角形性质
等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角)
推论1:等腰三角形顶角的平分线平分底边并且垂直于底边
等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
对称定理
定理:线段垂直平分线上的点和这条线段两个端点的距离相等
逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
定理1:关于某条直线对称的两个图形是全等形
定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
直角三角形定理
定理:在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
判定定理:直角三角形斜边上的中线等于斜边上的一半
勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
勾股定理的逆定理:如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形
数学中考的考点总结
多边形内角和定理
定理:四边形的内角和等于360°;四边形的外角和等于360°
多边形内角和定理:n边形的内角和等于(n-2)×180°
推论:任意多边的外角和等于360°
平行四边形定理
平行四边形性质定理:
1.平行四边形的对角相等
2.平行四边形的对边相等
3.平行四边形的对角线互相平分
推论:夹在两条平行线间的平行线段相等
平行四边形判定定理:
1.两组对角分别相等的四边形是平行四边形
2.两组对边分别相等的四边形是平行四边形
3.对角线互相平分的四边形是平行四边形
4.一组对边平行相等的四边形是平行四边形
矩形定理
矩形性质定理1:矩形的四个角都是直角
矩形性质定理2:矩形的对角线相等
矩形判定定理1:有三个角是直角的四边形是矩形
矩形判定定理2:对角线相等的平行四边形是矩形
菱形定理
菱形性质定理1:菱形的四条边都相等
菱形性质定理2:菱形的对角线互相垂直,并且每一条对角线平分一组对角
菱形面积=对角线乘积的一半,即S=(a×b)÷2
菱形判定定理1:四边都相等的四边形是菱形
菱形判定定理2:对角线互相垂直的平行四边形是菱形
正方形定理
正方形性质定理1:正方形的四个角都是直角,四条边都相等
正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
数学中考的考点
中位线定理
三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半
梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h
相似三角形定理
相似三角形定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
相似三角形判定定理:
1.两角对应相等,两三角形相似(ASA)
2.两边对应成比例且夹角相等,两三角形相似(SAS)
直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
判定定理3:三边对应成比例,两三角形相似(SSS)
相似直角三角形定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
性质定理:
1.相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比
2.相似三角形周长的比等于相似比
3.相似三角形面积的比等于相似比的平方
三角函数定理
任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值
任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值