代数教学总结范文(通用三篇)

阿林

  代数教学总结1

  一、代数式的定义:

  用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。

  注意:

  (1)单个数字与字母也是代数式;

  (2)代数式与公式、等式的区别是代数式中不含等号,而公式和等式中都含有等号;

  (3)代数式可按运算关系和运算结果两种情况理解。

  三、整式:单项式与多项式统称为整式。

  1.单项式:数与字母的积所表示的代数式叫做单项式,单项式中的数字因数叫做单项式的系数;单项式中所有字母的指数的和叫做单项式的次数。特别地,单独一个数或者一个字母也是单项式。

  2.多项式:几个单项式的和叫做多项式,在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项;在多项式里,次数最高项的次数就是这个多项式的次数。

  四、升(降)幂排列:

  把一个多项式按某一个字母的指数从小到大(或从大到小)的顺序排列起来,叫做把多项式按这个字母升(降)幂排列。

  五、代数式书写要求:

  1.代数式中出现的乘号通常用“·”表示或者省略不写;数与字母相乘时,数应写在字母前面;数与数相乘时,仍用“×”号;

  2.数字与字母相乘、单项式与多项式相乘时,一般按照先写数字,再写单项式,最后写多项式的书写顺序。如式子(a+b)·2·a应写成2a(a+b);

  3.带分数与字母相乘时,应先把带分数化成假分数后再与字母相乘;

  4.在代数式中出现除法运算时,按分数的写法来写;

  5.在一些实际问题中,有时表示数量的代数式有单位名称,如果代数式是积或商的形式,则单位直接写在式子后面;如果代数式是和或差的形式,则必须先把代数式用括号括起来,再将单位名称写在式子的后面,如2a米,(2a-b)kg。

  六、系数与次数

  单项式的系数和次数,多项式的项数和次数。

  1.单项式的系数:单项式中的数字因数叫做单项式的系数。

  注意:

  (1)单项式的系数包括它前面的符号;

  (2)若单项式的系数是"1”或-1“时,"1"通常省略不写,但“-”号不能省略。

  2.单项式的次数:单项式中所有字母的指数和叫做单项式的次数。

  注意:

  (1)单项式的次数是它含有的所有字母的指数和,只与字母的指数有关,与其系数无关;

  (2)单项式中字母的指数为1时,1通常省略不写,在确定单项式的次数时,一定不要忘记被省略的1。

  3.多项式的次数:多项式中次数最高的项的次数就是多项式的次数。

  4.多项式的项数:在多项式中,每个单项式都叫做多项式的项,其中不含字母的项称为常数项。一个多项式有几项,就叫几项式,它的项数就是几。多项式的项数实质是“和”中单项式的个数。

  七、列代数式:

  用含有数、字母和运算符号的式子把问题中的数量表示出来就是列代数式。

  正确列出代数式,要掌握以下几点:

  (1)列代数式的关键是理解和找出问题中的数量关系;

  (2)要掌握一些常见的数量关系如行程问题、工程问题、浓度问题、数字问题等;

  (3)要善于抓住问题中的关键词语,如和、差、积、商、大、小、几倍、平方、多、少等。

  八、代数式求值:

  一般地,用数值代替代数式中的字母,按照代数式中指明的运算计算的结果叫做代数式求值。

  代数式求值的三种方法:1.直接代入求值;2.化简代入求值;3.整体代入求值。

  常见考法

  列代数式与代数式求值是中考的必考知识点,它涉及的知识范围广,可与实际问题(如乘车,购物、储蓄、税收等)相结合,特别的探索规律列代数式这类考题为中考命题者提供了广泛的空间,是近几年的热点,这类题通常是从一列数、一个数阵、一个等式、一组图形中,观察出规律,并尝试归纳出代数式或公式,再加以验证。

  误区提醒

  (1)列代数式时,由于审题不清,对条件理解不透,很容易搞错运算顺序而列错代数式;

  (2)求代数式的值,将代数式中字母用相应的数值后,代数式就变成了实数的混合运算。如果没有对实数运算掌握好,就会出现运算顺序搞错的现象。

  (3)在进行规律探索中,由于在审题中没有抓住问题的性质,常常得出不能完全反映全部规律的错误规律,出现以点概面,以偏概全的现象。

  代数教学总结2

  20xx-20xx学年第二学期的教学工作已顺利结束,为了及时、准确了解考试状况,以便不断改进教学,现将本次考试情况总结如下:

  一、对试卷的总体评价:

  1.命题目的

  1)用于考查学生对基本知识的掌握情况

  2)用于考查学生运用所学知识分析和解决问题的能力

  2.预期结果

  本次考试基本上达到了预期的'目的,试题较科学、严谨、试卷内容覆盖面宽、试卷结构合理,由于本班学生是三年高职生,基础较好、学习态度端正加之复习准备较充分,所以考试成绩较理想。

  二、学生成绩分布情况:

  三、分析失分的原因;

  本试卷共包括6个大题:

  (1)填空题,本题占总分的10%,学生平均得分约8分,掌握较好,说明学生的基础知识较扎实。

  (2)选择题,满分30分,平均得分约27分,掌握较好,说明学生对基础知识理解透彻。

  (3)判断题,该题满分15分,平均得分约13分,掌握较好,说明学生的判断力较强。

  (4)计算题,该题满分31分,平均得分约27分,掌握较好,说明学生的计算能力较强。

  (5)证明题,该题满分5分,平均得分约5分,掌握较好,说明学生的基础知识较扎实。

  (6)解方程,满分9分,平均得分约7分,掌握一般,说明学生的计算能力欠缺。

  其中失分较多的题目是解方程,原因是:

  a.三年高职学生的数学基础相对五年高职和三年中职的学生来说要好得多,但随着高校招生规模的扩大及我院招生速度增加,整体学生素质也相对下降,通过一学期的学习,学生的数学水平有很大的提高,但个别学生学习数学的兴趣较底,书面表达能力较差。因此根据要求分析和证明上错误较多,失分情况较多。

  b.因学生来源不同,学生的层次不同,内地学生基础普遍较好,本地学生基础相对较差。

  四、存在的问题及建议:

  a.随着高校招生规模的扩大及我院招生速度增加,整体学生素质也相对下降,招生时应有所选择。

  b.教学方法有待改进。

  代数教学总结3

  同学们在学习线代的时候觉得有难度。我认为有两个方面的原因:

  1.大家在学习了高数后,难免在学习线代时后劲不足;

  2.线代知识体系错综复杂,联系比较多,大家往往搞不清联系。

  下面,跨考教育数学教研室的向喆老师跟大家说说一些难理解和常考的概念。今天所说的是线性代数中的矩阵学习问题,大家分三个步骤来学习。

  首先,构建矩阵知识框架。矩阵这一章在线性代数中处于核心地位。它是前后联系的纽带。具体来说,矩阵包括定义,性质,常见矩阵运算,常见矩阵类型,矩阵秩,分块矩阵等问题。可以说,内容多,联系多,各个知识点的理解就至关重要了。

  然后,把握知识原理。在有前面的知识做铺垫后,大家就要开始学习矩阵了。首先是矩阵定义,它是一个数表。这个与行列式有明显的区别。然后看运算,常见的运算是求逆,转置,伴随,幂等运算。要注意它们的综合性。还有一个重点就是常见矩阵类型。大家特别要注意实对称矩阵,正交矩阵,正定矩阵以及秩为1的矩阵。

  最后就是矩阵秩。这是一个核心和重点。可以毫不夸张的说,矩阵的秩是整个线性代数的核心。那么同学们就要清楚,秩的定义,有关秩的很多结论。针对结论,我给的建议是大家最好能知道他们是怎么来的。最好是自己动手算一遍。我还补充说一点就是分块矩阵。要注意矩阵分块的原则,分块矩阵的初等变换与简单矩阵初等变换的区别和联系。

  最后,多做习题练习。在前面有了知识体系和掌握了知识原理后,剩下的就是多做题对知识进行理解了。有句古话:光说不练假把式。所以对知识的熟练掌握还是要通过做题来实现。同时,我也反对题海战术,做题不是盲目的做题,不是只做不练。做题应该是有选择的做题,做一个题就应该了解一个方法,掌握一个原理。所以,大家可以参考历年真题来进行练习。每做一个题,大家就该考虑下它是怎么考察我们所学的知识点的。如果做错了,大家还要多进行反思。找到做错的原因,并且逐步改正。这样才能长久的提高。

  总之,希望大家在学习线性代数的矩阵的时候把握这三个原则,在此基础上,勤思考,多练习,那么大家一定可以学习好,祝大家考研成功!