著名数学家陈省身曾说过:“了解历史的变化是了解这门科学的一个步骤。”李文林先生的《数学史概论》即为我们了解数学提供了重要途径,本书系统全面,且一反寻常论述类著作的晦涩,理性与趣味并举,严谨与生动兼备,尽显数学的神圣与魅力。成书的初衷是为一些高等院校的数学史课程提供一个参考范本,但事实上,本书除了为数学专业师生提供参考外,也在不同程度上满足了对数学史感兴趣的各类读者的需求,自2000年8月出版第1版以来,深受广大读者的推崇。
初读此书时,我还是一名大三的学生,一次偶然的翻阅,为我打开了新世界的大门,那些陌生的、新奇的领域逐渐豁然开朗。原来数学的演化经历了一个漫长而又曲折的过程,从远古到现代,它不断发展完善着;原来每一个看似简单的定理都承载着一个不为人知的故事,它简单却厚重;原来数学是一门理性却并不冰冷的学科,它来源于生活而又高于生活,鲜活且生动。正如李文林先生在书中所言“数学的发展与人类的生产实践和社会需求密切相关。对自然的探索是数学研究最丰富的源泉。但是数学的发展对于现实世界又表现出相对的独立性。一门数学分支或一种数学理论已经建立。人们便可在不受外部影响的情况下,仅靠逻辑思维而将它向前推进。并由此导致新理论与新思想的产生。”它是一门科学,也是一种语言,有自己的文字符号,有自己的内在逻辑体系。它从无到有,从零散到系统,从微小到庞大,它所经历的每一次危机,又由此所取得的每一个重大突破,让我为之震撼与景仰。
如今我已是一名入职两年的数学教师,再看《数学史概论》,又能从中汲取许多教学灵感。学生对数学没兴趣,认为数学枯燥,学无所用,一方面是因为多年被数学作业支配的恐惧,另一方面也来自于他们对数学的不了解。倘若在一个孩子还小的时候,就依据他的认知水平,给他讲一些数学家的和数学发展中的逸闻趣事,例如,泰勒斯测量金字塔、阿基米德给国王测量王冠体积、祖冲之父子与圆周率、数学王子高斯与其卓越的数学天赋、费马与费马大定理、理发师悖论与芝诺悖论等等,那么,在日后的数学学习中,他也许不会对数学产生抵触情绪。在学习到相关内容时,看到一个个熟悉的人名,便会自然而然地产生亲切感和兴趣,学习起来事半功倍。
而作为高中数学教师,我们也可以将数学史融入平时的数学教学中,让学生在数学学习过程中,不仅接触到冷冰冰的知识,还接触到知识背后所蕴藏的数学家的情感和意志,体味其中的数学思想,感受到数学的文化魅力。比如在必修一“函数与方程”的教学中,可以给学生讲,从塔塔利亚到阿贝尔和伽罗瓦的方程发展史,让学生明白利用“函数与方程的关系”求解方程近似解的意义。在必修二解析几何的教学中,可以根据笛卡尔的“通用数学”思路,引导学生发现:解决几何问题的一大途径,是将它转化为代数问题。
数学是一门历史性或者说是累积性很强的学科,我们学习数学的过程应与人类认识数学的顺序一致,这样更符合我们的数学认知规律。学习数学的道路上遇到的每一个问题,或许都有数学家为它绞尽脑汁过。读数学史,可以帮助我们了解数学演化的真实过程,体味数学思想的诞生与发展,可以使我们从前人的`探索和奋斗中汲取教训和经验,获得鼓舞和增强信心。那些悠悠长河中的数学人所做的每一份努力,都是为了让我们可以站在他们的肩膀上,更清楚地认识这个世界。
数学是各个时代人类文明的标志之一,是推进人类文明的重要力量,数学史不仅是我们这些数学相关人士需要了解的,任何一个关心人类文明发展的人都值得了解。
此书是《数学史教程》的第二版,这本书还得到了诸多数学界有望人士的高度赞扬。嘉兴学院名誉校长,国际数学大师陈省身先生为此书惠赠了墨宝:了解历史的变化是了解这门科学的一个步骤。此外,吴文俊院士也在百忙中赶写了读后感,对《数学史概论》一书在数学史学科研究上的肯定,并称之“翻阅此书都会开卷有益并感到乐趣”。
数学是一门历史性或者说积累性很强的学科,重大的数学理论总是在继承和发展原有理论的基础上建立起来的,它们不仅不会推翻原有理论,而且总是包容原先的理论。所以说数学是历史最悠久的人类知识领域之一。因此也有数学史家认为“在大多数学科里,一代人的建筑为下一代所摧毁,一个人的创造被另一个人所破坏,但是有些学科就像数学,每一代人都在古老的大厦上添加一层楼”。
作者是按如下的数学史分期为线索进行展开论述的:
一、数学的起源和发展;
二、初等数学时期;
1、古希腊数学,
2、中世纪东方数学,
3、欧洲文艺复兴时期。
三、近代数学时期;
四、现代数学时期。
此书从上古的巴比伦、希腊、中国、印度、阿拉伯,以至当代数学,对于数学的贡献与影响都有中肯的评论和解说。在原始社会,从原始的“数觉”到抽象的“数”概念的形成;随着计数的慢慢发展,出现了石子记数和结绳记事等记数方法;接着经验算术与几何法的发现;再在此基础上加工升华为具有初步逻辑结构的论证数学体系;随之发展而来的便是近代数学;之后数学的发展更是迅猛:微积分的创立,代数学的新生,几何学的变革......
在很多人看来数学总是那么枯燥乏味的,没有多大的兴致看完这本书。而此书中作者不仅对数学史实有详尽而忠实的介绍,还借助各种例子来让读者理解,甚至加入了很多生动有趣的故事及奇闻轶事,例如阿基米德解决皇冠难题的故事,牛顿苹果落地的故事等等。读之趣味盎然,大大增强了书本的可读性。书中还写到了很多著名的数学家,并就其学术成就做了概括的介绍,尤其重要成就,不惜花了很多篇幅以详细说明。
最后,作者还就数学与社会的关系及两者互相之间的影响发表了论述。他精辟地阐述为:数学的发展与社会的进步有着密切的联系,这种联系是双向的,即一方面,数学的发展依赖于社会环境,受着社会经济、政治和文化等诸多因素的影响;另一方面,数学的发展又反过来对人类社会物质文明和精神文明两大方面的影响。接着,作者从数学与社会进步,数学发展中心的迁移,数学的社会化三方面进行了展开说明。
我想我本是数学系的学生,多少是得对数学史有所了解。虽没有过于仔细的拜读,但我想通过这次翻阅还是受益匪浅的。