五年级数学《分数与除法》教学反思
“分数和除法的关系”主要引导学生探索并理解分数与除法的关系,教材呈现的直观的情境图:把3块饼平均分给4个小朋友,每人分得多少块?分饼的情境,对于五年级的学生来说相当熟悉,不但生活中有,以前的课本知识中也有,生活、学习的经验体会到和以前分饼的问题有相同之处,都是用饼分给一些小朋友,每个小朋友可以分得多少个饼的问题,算式是3÷4=?,有直观的情境图帮助学生思考,有学生知道这个算式的结果是3/4块。借机可以让全体学生直观地体会结果不满1时可以用分数表示,直观帮助学生初步体会分数与除法的关系。五年级数学下册分数和除法教学反思
验证“3÷4是否是3/4块,也就是每人分得是3/4块饼吗”是这堂课的难点,操作能帮助学生理解。方法一是一个饼一个饼地分,将第一个饼平均分成4份,每个小朋友分得其中的一份,也就是分得1/4个饼,用同样的方法分别将第二、第三个饼也分,每个小朋友还是分得1/4块饼,三次一共分得3个1/4块饼,合起来是3/4块饼;方法二是三个饼叠在一起分,平均分成4份,每个小朋友分得其中的一份,也就是每人分得3块的1/4,有3个1/4块饼,即3/4块。操作、图像都是直观的不同手段和形式,同样可以帮助学生理解“3/4块饼”得到的过程,形成丰富、准确的表象。
观察等式3÷4=3/4、3÷5=3/5可以发现分数和除法之间的关系,有了板书的直观支撑,学生很容易知道被除数相当于分数的分子,除数相当于分数的分母,除号相当于分数的分数线;有了板书的直观支撑,学生很容易知道除法与分数的区别,除法是一种四则运算之一,而分数是一种数,相对于自然数、小数而言的另外一种形式的数。在理解、掌握分数与除法关系的基础上,通过练习让学生进一步沟通分数与除法之间的关系,形成相应的技能。如,先将被除数改写成分子,后将除数改写成分母来的比较简单,且不容易出错等等。板书是可以一直留在学生视线中的直观媒体,便于学生反复观察、比较,可以帮助学生获得相应的结论。
情境图、动手操作、直观演示、板书这些形式和手段,可以帮助学生直观地理解知识和运用知识。“试一试”是让学生把低级单位的单名数换算成高级单位的单名数,题目:7分米=( )/ ( )米 23分=( )/ ( )。学生交流中有两种思路,一是运用分数的意义来解决问题的,把1米看做单位“1”平均分成10份,7分米是这样的7份,所以7分米=7/ 10米;二是低级单位换算成五年级数学下册分数和除法教学反思高级单位时,用除以进率的方法解决问题,即7÷10=7/10(米)。运用分数的意义和规律准确完成单位之间的换算,学生在思考时是离不开直观的支撑的。直观是学生理解的基础,直观是沟通知识的桥梁。
本课是引导学生探索并理解分数与除法的关系,并根据分数与除法的关系进一步掌握求一个数是另一个数的几分之几的实际问题的解答方法。在教学时我是从先把四个饼平均分给四个小朋友,每个小朋友可以分得几块?再把三个饼平均分给四个小朋友,每个小朋友分得几块?让学生分别列式。然后引导学生比较两个算式的结果。学生很自然就发现一个可以得到整数商,一个不能。这时我顺势引导学生:不能得到整数商的可以用什么数表示呢?自然的导出分数。我觉得这样处理,一方面可以让学生真正产生学习的需要,体会到用分数表示的必要性,另一方面也可以让学生初步的感知到分数与除法之间确实是有关系的。这样学生学习的目的明确些,兴趣也高一些。在例题的教学中,学生对分数与除法之间的关系还是比较容易理解的,掌握的也不错。我重点是强调了单位换算,通过引导学生比较,发现单位间的进率就是分母的结论。学生运用这样的结论进行相关练习时正确率有很大的提高。
观察是学生常用的一种学习方法。如在本课得出被除数÷除数=被除数 / 除数时,我有意识的提出质疑:在分数与除法的关系中,有什么问题要问?学生有的自学了课本,有的依据课前或平时积累的经验,提出:(1)分母能不能为0?(2)用字母如何表示它们的关系?(3)分数是不是就是除法?在这一过程中,学生提出问题指向明确,突出了课堂进一步发展的需要,并在观察发现中答达成问题的解决。有的学生认为分母不能为0,因为分母相当于除数。个别同学认为分子也不能为0,但遭到同伴的反驳,澄清了分子可为0的理由。用字母表示分数与除法的关系,当教师提出用a表示被除数,b表示除数时,学生很轻松就用a/b表示出来;在探究“分数是不是就是除数”,学生的争辩非常激烈,点燃了课堂学习的热情,有学生认为从被除数÷除数=被除数 / 除数的关系中,非常明确说明分数就是除数,不然怎么用“等于”;有学生从教师提出:“我们学过了哪些数”中得到启发,认为分数是一个数,而除法是一道计算的式子,反对上面学生的意见,得出分数不等于除法;有人认为意义也不同,分数表示把单位“1”平均分成若干份,表示其中的一份或几份叫做分数,而除法表示把一个数平均分成几份,每份是多少??通过争辩,明确分数和除法的各自意义,提示了“分数相当于除法”的生成目标,体验了成功所带来的信心和力量,实现了以人发展为本的教学理念。
“数学教学要从学生的生活经验和已有的'知识背景出发,使学生感到数学就在自已的身边,在生活中学数学。使学生认识学习数学的重要性,提高学习数学的兴趣”.分数与除法,对于小学生来说,是一个比较抽象的内容。而在小学阶段数学知识之所以能被学生理解和掌握,绝不仅仅是知识演绎的结果,而是具体的模型、图形、情景等知识相互作用的结果。所以我在设计《分数与除法》这一课时,从以下两方面考虑:
一、以解决问题入手,感受分数的价值。
从分饼的问题开始引入,让学生在解决问题的过程中,感受当商不能用整数表示时,可以用分数来表示商。本课主要从两个层面展开,一是借助学生原有的知识,用分数的意义来解决把1个饼平均分成若干份,商用分数来表示;二是借助实物操作,理解几个饼平均分成若干份,也可以用分数来表示商。而这两个层面展开,均从问题解决的角度来设计的。
二、分数意义的拓展与除法之间关系的理解同步。
当用分数表示整数除法的商时,用除数作分母,用被除数作分子。反过来,一个分数也可以看作两个数相除。可以理解为把“1”平均分成4份,表示这样的3份;也可以理解为把“3”平均分成4份,表示这样的1份。也就是说,分数与除法之间的关系的理解、建立过程,实质上是与分数的意义的拓展同步的。
教学之后,再来反思自己的教学,发现就小学阶段的数学知识存储于学生脑海里的状态而言,除了抽象性的之外,应当是抽象与具体可以转换的数学知识。