教学是一门遗憾的艺术,但吹尽黄沙始现金。本节课以建模理论为基础,以问题为载体,以学生的动手实践、自主探究为主要的学习方式。在教学过程中,实施开放式教学,创设民主、宽松的教学氛围,最大限度地调动学生的积极性,激发他们的学习兴趣,引导他们多角度、多方位、多层次地思考问题,使他们有足够的的机会显示灵性、展示个性.教师成为课堂问题的激发者、有序探究的组织者。使师生成为“数学学习的共同体”。
教学中的成功之处:
成功之一:活动1的设计让学生自觉地进入到对定义的深入探究中,突出概念本质,深化对定义的理解,可使枯燥的概念学习更加生动。
成功之二:活动2中的两个问题设计很好,问题1分层次加强学生对平行四边形性质的感性认识,培养学生敢于猜想的意识。目的是让学生通过画一画、猜一猜、量一量、剪一剪得出平行四边形的两组对边分别相等,两组对角分别相等的性质。问题2使学生体会几何论证是探究性活动的自然延续和必然发展,感受到数学结论的确定性和证明的必要性。同时在这一教学过程中找到了将四边形问题转化为三角形问题的有效途径,这样既渗透了转化思想,又巧妙的突破了难点。
不足与改进:
遗憾一:如用猜一猜验证平行四边形的边、角关系,这种探究问题的方法固然是数学探究中的重要方法之一,但是从学生的知识基础来分析,这个探究活动就稍显简单了.学生在小学已经学习了平行四边形的基础知识,经历了针对图形的探究过程,知晓了平行四边形的边、角关系的结论,那么在此基础上的再次“观察、猜想、实验验证”就失去了其真正的意义,也很难激发学生的学习热情。
遗憾二:将四边形问题转化为三角形来解决的转化思想是本课的难点,教学过程中教师在通过逻辑分析的方法引导学生来突破难点,但是通过课堂实际观察笔者感觉到学生现阶段的思维发展状况与常用思维方法还是稍有差异。学生在此之前的学习中,还是以图形的直观认识为主,逻辑推理刚刚起步,还没有成为多数学生分析问题的首选方法,所以在探究性的问题中,逻辑推理很难成为多数学生的自然联想,虽然学生在教师的引导之下可以理解和接受,但是这个过程的教学难以实现“面向每一个学生”
总之,虽然本节课未能看到学生的精彩表现,但从学生课后回收的作业中,我还是可以看出本节课的教学目标已经有效达成。在今后的教学中我将本着重点激发学生学习的潜能,鼓励学生大胆创新与实践的方向,努力实现学生就是课堂的主人,向课堂四十五分钟要质量。
上完这节课,从学生上课情况、作业等多方面发现,本节课所取得的教学效果是值得肯定的,但也有需要改进的地方.为此,本人针对本节课的教学,从内容设计、新课标理念、教法等几个方面作了如下的反思:
1、流畅的教学设计、精心的内容编排、巧妙的时间运用是上好一节新课标理念下的新授课的大前提。
要开展多元化的探究活动,要学生在合作探索中体现和发现新知识,就必须在有限的45分钟时间里尽可能挤出时间和空间,让学生有更多的动手、动口、思考和尝试的机会.因此,整个新授课的教学设计必须很流畅,教学内容与练习的选取必须衔接连贯,不允许有任何时间上的点滴浪费.在教学过程中,本人通过创设情景、引入课题,出示学习目标重难点、自学指导,引导学生探究新知等教学环节.既培养学生的合作意识,又重视学生数学思想方法的学习,合理调整教学内容,使学生的学习目标更加明确,让学生在动中学.培养学生展示的意识。
2、能否以探究活动的形式,让学生通过自主探索、合作交流去发现和体验新知识是上好一节新课标理念下的新授课的关键.
数学学习过程充满着观察、实验、模拟、推断等探索性与挑战性活动.教师要改变以例题、示范、讲解为主的教学方式,引导学生投入到探索与交流的学习活动中去.这一节课学生已通过旋转操作的探究方式发现平行四边形是一个中心对称图形,进而探索得出“平行四边形的对边相等,对角相等,邻角互补”等特征,再借助动画演示使同学们对平行四边形有关边和角方面的性质有较深的理解.与此同时,学生也对旋转操作的步骤和要领有了一定的认识,以此为基础,既能体现新课标教学理念,又能提高学生的学习兴趣和实际操作能力,取得较好的学习效果。
学生的合作探究要取得成效,离不开教师的正确引导和促进.在探究活动中,教师应扮演一个参与者与促进者相结合的角色,加入学生中去,与学生们一起共同去探求和发现新知识,但这个参与者并不能只为参与而参与,他必须在参与者们产生误解或迷惑的时候提供正确的指引,促进参与者们朝着同一的、正确的方向迈进.而在练习过程中,教师此时就要摇身一变,成为一个新课标理念下知识传授者的角色,检查每一位学生的练习质量,对不足者及时辅导,较大问题及时在课堂上反馈,好让全班同学加以注意,提高警惕。
学生获得新知识后,接下来处理讲学稿例题精讲,开心练习,安排顺序:例1,做一做,试一试,练一练,巩固与提高,拓展与延伸。
以上就是我对这节课后的一点反思,以及对新课标理念下的新授课教学的一点个人看法。然而,怎样才能进一步完善和改进新课标理念下的新授课教学,这有赖于我们全体数学教学工作者通过不懈的努力,携手作出更深入的研究和探讨,互相交流,共同进步。
平行四边形的性质这一节课是本章的第一节,也是本章重点内容之一,它在本章中起着承上启下的作用,并为我们接下来研究各种特殊平行四边形——矩形、菱形、正方形等奠定重要基础;而平行四边形性质的探索需要借助我们已学过的平行线、三角形全等和四边形的内角和等相关知识,并且为证明线段相等和角相等提供重要依据和方法。因此,上好这一节课非常关键,既不能让学生感觉太难,也不能让他们糊弄过关。
所以,我在设计本节课时就遵循着这个原则,希望让学生能在亲身的动手操作中体会它的性质,并用心感受平行四边形在实际生活中的广泛应用。下面具体就每个环节进行简单的阐述:
环节一:感悟生活。
我先让学生欣赏几幅生活中的美丽图片,让他们从感性认识中体会平行四边形在日常生活中无处不在无处不用,从而体会数学的自然美,激发学习热情,然后给出平行四边形的定义。从定义出发,我设计了一个小练习让他们判断,体会平行四边形的符号语言,并顺利得到第一个性质。
环节二:性质的探究
平行四边形的性质是本节课的重点,而探究性质更是本节课的难点,所以在这个环节里我需要把难点击破,那就需要学生进行配合,教学相长。实践出真知!我通过小组合作的方式让学生自己动手操作,结合“想一想、量一量、拼一拼”等过程,尤其是对两个全等三角形进行拼凑成平行四边形,使他们实际操作中验证性质的成立并能从中体会性质的证明思路。通过小组间的合作交流学习,进行有的放矢的探究活动,把平行四边形转化为我们熟知的三角形,由已知探未知,从中形成科学的“猜想——验证——实验”的解题思路,养成科学的学习习惯。这是从感性认识到理性认识的一个飞跃过程。
环节三:例题精讲。
在这里我设计了两个例题,一个是课本的例题,是已知一条边和周长,求另外的三条边。这是比较简单的一个问题,所以我在讲解的时候没有花费过多的时间,只是点到为止,而把重点放在了第二个例题,因为它是综合性的,既存在边的性质方面,也需要求解角的问题。在这个例题上,我通过让学生自己进行分析,从中找出解题关键,结合新旧知识的联结,让学生形成知识脉络,进而口头描述思维过程,养成参与课堂教学的习惯,也使学生能更充分展现对知识的掌握和学习成果。
环节四:小试牛刀和拓展提高。
首先,我通过设计简单的练习,让学生立刻检测出课堂知识的掌握情况,并让他们感受性质的实际应用。接着,为了进一步拓展加深学生对性质的理解,拓展学生的思维,形成个体之间独立的解题思维方式,我设置了拓展提高部分的联系,有助于开拓学生的视野。
这两部分的练习,由浅入深,由易进难,具有一定的梯度,使学生的能力逐步加强,并体现因材施教的原则。同时,因为本章课标明确要求学生能够严格遵照说理过程,所以我在得出平行四边形性质的同时加上几何语言的描述,在练习中也明确强调规范学生的解题规范。
环节五:感悟收获与课堂总结。
通过本节课的学习,让学生体会本节课的知识点及其应用,再一次总结归纳,形成知识脉络,并通过学生自己讲述心得体会,既加深知识的掌握,同时也锻炼了学生与他人分享学习心得的过程与收获,并从中得到成功的喜悦,从而对数学的学习更加有兴趣更加有自信。
这一节课的设计经过了几次的反复的修改,算是有了一定的成功,也谢谢各位老师一直的指导和支持。下面我具体说说对于这节课的`几点反思。
一、本节课的教学设计具有以下几个特点:
1、在引入时通过对生活中的几幅精美图片的欣赏,让学生由最熟悉的生活场景入手,使学生体会数学无处不在,数学无处不用的情景,增强了学生的感性认识,从而激发了学生的学习热情。
2、通过探究式教学法,把课堂的自主权交给学生,让学生真正成为课堂的主人,而不再是传统教学当中学生就是被“填鸭式”的盲目接受教学结论,充分体现了学生的主体作用,尤其在拼接平行四边形的过程中,对学生进行分组,让学生自己动手,自己归纳结论,突出了重点并突破了难点。通过合作交流的学习方式,培养学生的实际操作能力和互助的学习技能,同时提高了学生的学习热情,把枯燥乏味的数学教学活动转变为生动有趣的小组学习活动,更加有利于学生对知识的理解和掌握,在此过程中,更注重学生数学解题思维的能力培养,充分体现了教师主导下的学生主体地位,符合新课标的要求,更有利于教学相长。
3、通过分组讨论学习和学生自己动手操作和归纳,加强了学生在教学过程中的实践活动,也使学生之间的合作意识更强,与同学交流学习心得的气氛更浓厚,从而加深了同学之间的友谊和师生之间的教学和谐,使得教学过程更加流畅,促进教学相长。
4、本节课的教学环节方面设计的比较好,从引入到定义,到探究到性质讲述,再到例题和练习,最后总结归纳,环环相扣,紧密有度,并且知识的应用比较到位,练习具有较好梯度,学生学习起来比较顺畅。
5、本节课的课件,在设计过程中,画面精美,颜色鲜艳,动画效果在演示当中流畅自然,背景切合教学实际,页面切换均让人耳目一新,既符合课堂的教学内容,更使得上课的学生和听课的老师把注意力集中在课件上,增加了课件的趣味性和知识性,也赢得了老师们的认可。
6、个人教态方面,通过各种鼓励方式充分调动学生的积极性,尽量使自己能融入学生当中,建立平等的师生关系,从而使课堂教学顺利进行。同时在提问方面,具有启发性和针对性,能让学生思维在集中当中发散开来,从而有的放矢,也节省了课堂的时间。
7、上课时间分配上把握得比较恰当,一节课40分钟,约10分钟进行定义的引入和讲述,5分钟的学生动手操作,10分钟的例题讲解,15分钟的练习与总结。
二、本节课在教学实施中还有以下几个不足之处:
1、在对学生的解题过程中说理能力上强调的不够。初二学生对平面图形的认识能力刚刚形成,抽象思维还不够,学习几何知识处于现象描述和说理的过渡时期。因此,对这部分内容的学习,要引导学生学会用准确的符号语言进行正确的说理。而我在教学中,由于赶时间,所以这部分知识过的比较快,可能对于基础比较差的学生有一定的困难。
2、在例题讲解中时间的把握不是很到位,显得有点仓促。在分析例题的时候,由于例一比较简单(相对于优分班的同学而言),所以我基本上没有详细解答,只是简单分析了一下题意;而在例二中,由于过分在意学生的自学能力,缺乏了较好的引导,所以容易被学生“蒙骗过关”,没有“顾全大局”,没有很好的进行板书和照顾基础稍微弱一点的学生,所以容易使得这部分的同学对于本题有点一知半解,没有掌握扎实。
3、学生缺乏“表演”的机会。在本节教学过程中,教师比较偏向于跟学生集体回答,使学生个体“表演”的机会计较缺乏,而且经常是带着学生一起解题,所以失去了个体的作用,也不能很好地体现个体学习的效果,在以后的教学中要注意多一点让学生自己表达观点和看法,给充分的时间让他们准备,从而也给予充足的鼓励给他们表现,才能使人人均有想学想表达的愿望。
4、对于某些问题上,数学语言不够规范化。对于本节课是平行四边形这一章的第一课时,所以对于平行四边形的表示方式特别注重强调,要从一开始就给学生进行规范化,那么他们在以后的知识中才能更好地用数学语言进行规范化解题和证明,所以需要多加强调。
课程改革为我们带来了新的教学观念,也为学生发展提供了更广阔的空间,在本节课的教学中,使我意识到,凡是学生能自己探究出来的,教师决不能取代,凡是学生能独立发现的,教师也千万不能埋没。让学生从学习中学会思考,学会交流,尽可能给学生一些空间,给他们表现的机会,使学生成为知识的探索者和发现者,徜徉知识的海洋。
承接上一章的内容,课本的设计意图是利用图形平移和旋转的特征来得出平行四边形的性质。我在设计本节课时就遵循着这个原则,先让学生看图片,体会到平行四边形在日常生活中的广泛应用,给出平行四边形的定义,从定义出发得到第一个性质,再由学生动手操作和教师演示旋转得到其他性质。因为本章课标明确要求学生能够严格说理过程,所以我在得出平行四边形性质的同时加上几何语言的描述,在练习中也注意规范学生的说理过程。
由于时间的关系,再加上,总认为学生已经有了小学知识的铺垫,就舍去了让学生动手实验操作探究的部分,而教师的演示又迟了一步,这就忽略了学生知识形成的过程!使得这堂课总觉得缺少些东西。
小结部分也做得较匆忙,应由学生自己归纳本节课的内容,把性质按边、角归纳,再加上几何符号的叙述那就更完整了。从练习看,部分学生的几何语言表述不够严谨,书写格式较混乱。
通过对本节课的回顾,我觉得下次上本课内容时应重点突出以下几个方面:
一、新课讲解过程,要让学生通过观察、拼一拼、折一折、量一量等方法去探究、去亲身感受知识的形成和发展过程。
二、在练习的过程中注意方法指导,“转化”思想的渗透。比如:当学生利用连结对角线来解决实际问题后,老师应该强调,我们在解决四边形问题时常用的方法是:“转化”成三角形问题。
三、对于学生的练习情况要多用多媒体来展示,使说和写有利地结合起来,培养学生论证推理的能力!
平行四边形的性质是从边、角、对角线三个方面研究的,所以,我将判定方法也从这三个方面入手。在整个教学过程中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨。判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要,用起来更加得心应手。在证明命题的过程中,学生自然将判定方法进行对比和筛选,不把思路局限在某一判定方法上。
(1)一题多变
一题多变,有利于学生抓住问题的本质或者说是核心,从变化的题目中抓住不变的东西———核心问题。本课的核心问题就是,平行四边形的判定方法的选择。
(2)一题多解
一题多解,有利于培养学生思维的发散性,对学生提升解题能力颇有帮助,而且能够让学生顺利建立起知识结构,起到事半功倍的效果。本课中,典型例题覆盖了几乎所有判定方法,使学生各种方法进行了合理分析,既可以牢固记住这些方法,又可以进行对比,理清他们的联系和区别,同时提升解题能力,避免了“题海战术”。
(3)多题一法