《因数和倍数》四年级数学教学反思

王明刚

《因数和倍数》四年级数学教学反思1

  教学片断:

  1、出示12个小正方形。

  师:数一数,一共有几个小正方形?如果老师请你把这12个同样的小正方形拼成一个长方形,会拼吗?能不能用一条简单的乘法算式表达出来?

  2、指名学生列式,提问其他学生:“你知道他是怎么摆的吗?”要求学生说出每排摆几个,摆了几排。

  3、根据学生的回答,适时贴出各种不同摆法:

  12×1=12

  6×2=12

  4×3=12

  4、12个同样大小的正方形拼成长方形,能列出三道不同的乘法算式,千万别小看这些乘法算式,咱们今天研究的内容就在这里。以4×3=12为例,12是4的倍数,那12也是(3的倍数),4是12的因数,那3也是(12的因数)。同学们很有迁移的能力,这就是我们今天要研究的倍数和因数。(板书课题)

  5、根据另外两道乘法算式,说说谁是谁的倍数,谁是谁的因数。

  6、刚才在听的时候发现12×1=12说因数和倍数时有两句特别拗口,是哪两句?

  说明:虽然是拗口了点,不过数学上还真是这么回事。12的确是12的因数,12也确实是12的倍数。为了方便,我们在研究倍数和因数时所说的数一般指不是0的自然数。

  7、说一说

  (1)根据72÷8=9,说一说哪一个数是哪一个数的倍数,哪一个数是哪一个数的因数。

  (2)从下面的数中任选两个数,说一说哪一个数是哪一个数的倍数,哪一个数是哪一个数的因数。

  3、5、18、20、36

  反思:

  陶老师从摆小正方形入手,提出“每排摆了几个?”“摆了几排?”这两个问题,引导学生用乘法算式把摆法表示出来,再让学生猜一猜“可能是怎么摆的”,学生充分经历了“由形到数、再由数到形”的过程,既为倍数和因数概念的提出积累了素材,又初步感知倍数和因数的关系,为正确理解概念提供了帮助。接着结合具体的乘法算式介绍倍数和因数,并让学生根据另外两道乘法算式说说谁是谁的倍数,谁是谁的因数。再通过除法算式让学生说说谁是谁的倍数,谁是谁的因数。最后让学生从五个数中任选两个数说说谁是谁的倍数,谁是谁的因数,这样层层深入,学生对倍数和因数的感受更加深刻。<

《因数和倍数》四年级数学教学反思2

  1、立足于学生的思维特点。中年级学生的思维特点是由具体形象思维到抽象概括思维过渡的重要年龄段。因此,我放弃了用12个小正方形摆长方形的动手实践活动,而选用了看12个小正方形在脑中想象摆法。在留有短暂时间让学生思考,脑中逐渐有了长方形的图象纷纷举手之后,我又不急于提问,而是追问:你能不能用一道乘法算式来表示?当学生说出乘法算式时,也不急于就此,还让其余同学想想他是如何摆的,做到全员参与。这种由形象到抽象,再由抽象到形象的过程,是符合学生的思维特点的,对于发展学生的抽象概括思维是有利的。

  2、层层辅垫,为学生自主探索打下了坚实的基础。探索36的所有因数是本节课的重难点,我在这之前做了层层的辅垫。

  (1)3个乘法算式的呈现我作了调整:1×12=12,2×6=12,3×4=12。潜移默化的影响学生的有序思考。

  (2)在学生根据其余两算式说因数和倍数的关系之后,我对12的所有因数进行了小结:12的因数有1,12,2,6,3,4。让学生感受到一道乘法算式中蕴藏着两个因数。

  (3)36这个数比较大,学生找起36的所有因数时有点困难,我设计了从3,5,18,20,36五个数中选择两个数来说说谁是谁的因数,谁是谁的倍数?这一教学环节,减轻了学生的困难,同时也能检验学生对因数和倍数概念是否已正确认识。当学生会说3是36的因数,36是3的倍数时,说明他们脑中已经有了判断的依据:3×12=36。

  (4)在学生独立探索前,我又提醒学生,在找36的所有因数时,如果遇到困难,不要忘了我们已经寻找过12这个数的所有因数,可以作为参考。

  这四个方面的准备,学生的独立思考才有了思维的依托,遇到困难,他们就会自我想办法,自我解决问题,这样的探索就会有效,不会浮于表面,流于形势。

  3、有层次的呈现作业,给学生以正面引导为主。在概括总结找36所有因数的方法时,我找了三份的作业,第一份是有序,成对思考的1,36,2,18,3,12,4,9,6。在交流中让学生明确只有有序的,成对的思考才会做到既不遗漏,又能快捷方便,第二份作业是所有的因数按顺序排列的1,2,3,4,6,9,12,18,36。结果作业中漏了一个4,这是个时机,在表扬了这个学生能按顺序的排列,做到美观这个优点之后,提出问题:美中不足的是什么?学生:一个一个找麻烦,还容易丢。我接着追问;我们能给他提些建议吗?第三份是无序的有遗漏的,也让学生给他提建议,让他也能做到一个不漏。这三份作业对比下来,先教给学生正确的思考方法,再以正确的方法判断其他同学思考不当的.地方,并提出建议。寻找一个数所有因数的方法也能深刻地印在学生脑里。

  4、大胆放手,产生矛盾冲突,发现问题,想办法解决问题。在找3的倍数时,我想学生有了前面的学习基础,我直接抛出问题:你能像上面这样有序的从小到大的找出3的倍数吗?学生在找中发现:3的倍数有很多,写不完。我追问;那怎么办,有办法吗?通过一会儿的沉默思考后,纷纷有学生提出省略号。

  5、趣味练习,联想,探索。练习中我设计了两道题,一是猜我的电话号码,激发起学生的兴趣,二是探索计数器的奥秘,多位老师问起我的设计意图,我是这样想的:重在培养学生善于联想,勇于探索的习惯。由个体现象联想到同类现象并能深入探索,这是创造的源泉,牛顿看到苹果落地,通过联想,最终发现了万有引力定律,瓦特看到茶壶里冒出蒸气,通过联想,最终发明了蒸气机…这与一个人的认真观察,善于联想,勇于探索是分不开的。<

《因数和倍数》四年级数学教学反思3

  教学内容

  教科书第70-72页的例题和“试一试”、“想想做做”第1-3题。

  教学目标

  1、让学生通过操作,利用乘法算式,认识倍数的因数的意义,理解倍数和因数的关系,掌握找一个数的因数和倍数的方法,发现一个数的倍数、因数的某些特征。

  2、让学生体会一个数的倍数与因数之间相互依存的关系,发展学生的数感,培养学生观察、分析、抽象能力,并在找一个数的倍数和因数的过程中,培养学生思维的有序性。

  3、使学生感悟数学知识内在联系的逻辑美,增强学生学习数学的兴趣。

  教学重点和难点

  重点:

  1、理解倍数与因数的意义及相互依存关系。

  2、掌握找一个数的倍数和因数的方法。

  难点:

  1、理解倍数与因数的相互依存关系。

  2、找全一个数的所有因数。

  教学具准备:小黑板、12个小正方形

  教学过程设计

  (一)激趣导入

  陶老师先来考考大家的语文水平,你能用“()是()的()”这样一句话来表示陶老师和你的关系吗?

  人与人之间有这样相互依存的关系,我们的数学中也有这样相互依存的关系,相信通过本节课的学习你会有所发现。

  (二)认识倍数和因数

  1、出示12个小正方形。

  师:数一数,一共有几个小正方形?如果老师请你把这12个同样的小正方形拼成一个长方形,会拼吗?能不能用一条简单的乘法算式表达出来?

  2、指名学生列式,提问其他学生:“你知道他是怎么摆的吗?”要求学生说出每排摆几个,摆了几排。

  3、根据学生的回答,适时贴出各种不同摆法:

  12×1=12

  6×2=12

  4×3=12

  4、12个同样大小的正方形拼成长方形,能列出三道不同的乘法算式,千万别小看这些乘法算式,咱们今天研究的内容就在这里。以4×3=12为例,12是4的倍数,那12也是(3的倍数),4是12的因数,那3也是(12的因数)。同学们很有迁移的能力,这就是我们今天要研究的倍数和因数。(板书课题)

  5、根据另外两道乘法算式,说说谁是谁的倍数,谁是谁的因数。

  6、刚才在听的时候发现12×1=12说因数和倍数时有两句特别拗口,是哪两句?

  说明:虽然是拗口了点,不过数学上还真是这么回事。12的确是12的因数,12也确实是12的倍数。为了方便,我们在研究倍数和因数时所说的数一般指不是0的自然数。

  7、说一说

  (1)根据72÷8=9,说一说哪一个数是哪一个数的倍数,哪一个数是哪一个数的因数。

  (2)从下面的数中任选两个数,说一说哪一个数是哪一个数的倍数,哪一个数是哪一个数的因数。

  3、5、18、20、36

  (三)探索找一个数因数和倍数的方法。

  1、找一个数的因数。

  (1)谈话:看来同学们对于倍数和因数已经掌握得不错了。不过刚才陶老师在听的时候发现了一个奥秘,好几个数都是36的因数,你发现了吗?这五个数中那些数是36的因数?

  其实要找36的一两个因数并不难,难就难在你有没有能力把36的所有因数全部找出来?能不能?

  由于这个问题有一点难度,所以陶老师作几点说明:

  ①思考一下,什么样的数是36的因数?

  ②可以独立完成,也可以同桌合作完成。

  ③想一想怎么找不重复不遗漏,如有困难可参照书本第71页。

  ④写下因数,如果能把怎么找到的方法写在作业纸上更好。

  (2)学生找完后交流:你是怎么找的?怎样找不重复不遗漏?

  (3)小结:为了不重复不遗漏,我们在寻找一个数的因数时,可以按一定顺序,一组一组地写出36的所有因数。

  (4)完成“试一试”,然后集体交流。

  2、找一个数的倍数。

  (1)谈话:寻找一个数的因数大家掌握得不错,这节课还要研究倍数呢!你能找出3的倍数吗?想一想,什么样的数是3的倍数?

  (2)师生共同寻找。

  提问:怎么找不重复不遗漏?能全部说完吗?可以怎样表示3的倍数?

  (3)小结并规范写法:

  3的倍数:3、6、9、12、15……

  (4)完成“试一试”,然后集体交流。

  3、探索一个数的倍数和因数的特点:

  ①观察比较:一个数的倍数和因数有什么特点呢?

  ②学生在小组内进行比较、分析、讨论,然后集体交流。

  ③小结归纳:一个数的倍数的个数是无限的,一个数的因数的个数是有限的;一个数的倍数中最小的是它本身,最大的不存在,而一个数的

  因数中最小的是1,最大的是它本身。

  4、填一填。

  15的因数有()

  30以内7的倍数有()

  (四)课堂小结

  通过本节课的学习,你有什么收获?你发现数学中相互依存的关系了吗?其实数学中有趣的事儿多着呢!

  阅读《神奇而有趣的“完美数”》,感受数学的神奇。

  学生尝试寻找第二个完美数,师提示:第二个完美数比20大,比30小,是个双数,而且正好是老师的年龄。

  (五)课堂作业

  《数学补充习题》

  教后反思:

  总的感觉是上好一堂课不容易。倍数和因数是学生闻所未闻的两个新概念,是纯知识性的内容,而且整节课的容量较大,学生能有效的掌握每一个知识点比较困难。为了更好更有效的达到教学目的,突破教学难点,我主要注重下面三个方面的设计:

  1、捕捉生活与数学之间的联系,帮助学生理解概念间的关系。

  试上下来我感觉学生对倍数因数间的相互依存关系理解不到位,看着学生我突然想到可以利用我与学生的关系呀。于是我把生活中的相互依存关系迁移到数学中的倍数和因数,这样设计自然又贴切,既让学生感受到了数学与生活的联系,初步学会从数学的角度去观察事物、思考问题,激发对数学的兴趣,又帮助学生理解了倍数因数之间的相互依存关系。

  2、以思维的条理性和有序性作为难点的突破口。

  在教学一个数的因数时,我让学生通过比较发现,有序的思考一个数的因数不但可以避免重复、遗漏,而且书写整洁清楚。让学生充分感受有条理、有序的思考是一种非常有效的学习方法。当学习求一个数的倍数时,学生就自然而然的去有序的思考,通过合作交流,学生作业的汇报,发现只有有序的去找,才没有遗漏,没有重复。整节课下来,我发现这种有序思维不但能加速解决数学问题的思维进度,而且还有利于优化学生的思维品质,快速发展学生的思维。

  3、以精心设计的练习作为有效训练的载体。

  为了帮助学生理解数和数之间的倍数和因数关系,练习中我设计了72÷8=9这道除法算式,让学生说说哪一个数是哪一个数的倍数,哪一个数是哪一个数的因数,这样学生就明白了除法算式中也有倍数和因数关系。接着我有设计了3、5、18、20、36这5个数,运用所学知识让学生选择性说说哪两个数存在倍数和因数的关系。这样的设计,培养了学生观察、分析问题、口头表达的能力,也为了更进一步巩固了倍数和因数的概念理解。在课尾,我还设计了寻找“完美数”的活动,这一活动充分调动学生参与学习、主动学习的积极性,并让学生感受到了数学的神齐、有趣,激发了学生学习数学的兴趣。