教学内容:
《反比例的意义》是六年制小学数学(人教版)第十二册第一单元《比例》中的内容。是在学过“正比例的意义”的基础上,让学生理解反比例的意义,并会判断两个量是否成反比例关系,加深对比例的理解。
学生分析:
在此之前,他们学习了正比例的意义,对“相关联的量”、“成正比例的两个量的变化规律”、“如何判断两个量是否成正比例”已经有了认识,这为学习《反比例的意义》奠定了基础。
设计理念:
学习方式的转变是新课改的显著特征,就是把学习过程中的分析、发现、探究、创新等认识活动凸显出来。在设计《反比例的意义》时,根据学生的知识水平,对教学内容进行处理,克服教材的局限性,最大限度地拓宽探究学习的空间,提供自主学习的机会。
教学目标:
1.通过探究活动,理解反比例的意义,并能正确判断成反比例的量。
2.引导学生揭示知识间的联系,培养学生分析判断、推理能力
教学流程:
一、复习铺垫,猜想引入
师:(1)表格里有哪两个相关联的量?(2)这两个相关联的量成正比例关系吗?为什么?
2.猜想
师:今天我们要学习一种新的比例关系——反比例关系。(板书:反比例)
师:从字面上看“反比例”与“正比例”会是怎样的关系?
生:相反的。
师:既然是相反的,你能联系正比例关系猜想一下,在反比例关系中,一个量会怎样随着另一个量的变化而变化?它们的变化会有怎样的规律?
生:(略)
反思:根据学生认知新事物大多由猜而起的规律,从概念的名称“正、反”两宇为切入点,引导学生“顾名思义”,对反比例的意义展开合理的猜想,激起学生研究问题的愿望。
二、提供材料,组织研究
1.探究反比例的意义
师:大家的猜想是否合理,还需要进一步证明。下面我提供给大家几张表格,以小组为单位研究以下几个问题。
(1)表中有哪两个相关联的量?
(2)两个相关联的量,一个量是怎样随着另一个量的变化而变化的?变化规律是什么?
2.小组讨论、交流。(教师巡回查看,并做适当指导。)
3.汇报研究结果
(在汇报交流时,学生们纷纷发表自己的看法。当分析到表3时,大家开始争论起来。)
生1:剩下的路程随着已行路程的扩大而缩小,但积不一定。
生2:已行路程十剩下路程=总路程(一定)。
生3:我认为第一个同学的说法不准确,应该换成“增加”和“减小”……
(最后通过对比大家达成共识:只有表2和表3的变化规律有共性。)
师:表2和表3中两个量的变化规律有哪些共性?(生答略。)
师:这两个相关联的量叫做成反比例的量,它们的关系叫做反比例关系。(完成板书。)
师:如果用字母A和B表示两个相关联的量,用C表示它们的积,你认为反比例关系可以用哪个关系式表示?[板书]
反思:教材中两个例题是典型的反比例关系,但问题过“瘦”过“小”,思路过于狭窄,虽然学生易懂,但容易造成“知其然,而不知其所以然”。通过增加表3,更利于学生发现长×宽=长方形的面积(一定)这一关系式,有助于学生探究规律。同时还增加了表1、表4,把正比例关系、反比例关系、与反比例雷同(“和”一定)的情况混合在一起,给学生提供了甄别问题的机会。
4.做一做(略)
5.学习例6
师:刚才我们是参照表格中的具体数据来研究两个量是不是成反比例关系,如果这两个量直接用语言文字来描述,你还会判断它们成不成反比例关系吗?(投影出示例题。)
三、巩固练习,拓展应用
1.基本练习。(略)
2.拓展应用。
师:你能举一个反比例的例子吗?(先自己举例,写在本子上,再集体交流。)
交流时,学生们争先恐后,列举了许多反比例的例子。课正在顺利进行时,一个同学举的“正方形的边长×边长=面积(一定),边长和边长成反比例”的例子引起了学生们的争论。,教师没有马上做判断,而是问学生:“能说出你的理由吗?”有的学生说:“因为乘积一定,所以边长和边长成反比例关系。”对他的意见有的同学点头称是,而有的同学却摇头……忽然,一名同学像发现新大陆一样大声叫起来:“不对!边长不随着边长的扩大而缩小!这是一种量!”一句话使大家恍然大悟:对啊!边长是一种量,它们不是相关联的两个量,所以边长和边长不成反比例。后来又有一名同学举例:“边长×4=正方形的周长(一定),边长和4成反比例。”话音刚落,学生们就齐喊起来:“不对!边长和4不是相关联的两个量。”
反思:通过“你能举一个反比例的例子吗?”这样一个开放性练习题,让学生联系已有的知识,使新旧知识有机结合,帮助学生建立起良好的认知结构,这同时也是对数量关系一次很好的整理复习机会,通过举例进一步明确如何判断两个量是否成反比例。
3.综合练习
四、总结
反思:
《数学课程标准》中指出:“学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。”而现行的小学数学高年级教材,内容偏窄、偏深,部分知识抽象严密、逻辑性强、脱离学生的生活实际,与新教材相比明显滞后。如何将新的课改理念与旧教材有机整合,是我们每一个数学教师应该思考探索的课题。
正比例的意义是一个非常抽象的数学概念性知识。因此,我从学生熟悉的事情入手,关注学生已有的知识与经验,并通过现实生活中的生动素材引入新课,使抽象的数学具有丰富的现实基础。本节课的教学,主要体现以下几个特点:
一、把“分层”理念贯穿于整节课堂
学生是一个个鲜活的个体,知识基础和生活经验各不相同,所以教学中我尽最大努力照顾到所有的学生,使他们每一个人都得到应有的知识和不同程度的提高。新课开始,我设计了生活中的一种情景,利用表一引导学生进行观察,并出示学习提示,让学生从不同角度说出自己所观察到的,初步渗透正比例的意义。在引导学生初步感知了两种相关联的量后,放手让学生采取小组合作的方式自学表二,并让学生在小组中讨论例题的共同点,从而归纳出正比例的意义。
在整个教学过程中,我灵活运用《分层测试卡》这一教学资源,把其中的题目按照难易程度和层次的不同选择性的适时融入教学,为学生理解正比例的意义而服务。
二、关注学生的学习过程
数学学习是一个思考的过程,没有思考就没有真正的数学学习。新的数学课程标准倡导:引导学生以自主探索与合作交流的方式理解数学,解决问题。所以我在教学中利用表格,创设学生熟悉的系列生活情境,与正比例的意义进行联系。让学生独立填表,目的是让学生经历这样的一个过程,让学生在填表的过程当中,强化学生对于概念表象的建立。通过学生独立填表让学生几次感知“变”与“不变”,在感知“变”与“不变”过程中体会“相关联”,以此来理解正比例的意义。让学生通过观察分析、归纳概括、拓展提升等系列的学习活动,这样安排教学使学生经历了正比例意义的建构过程,并且采取数形的教学手段把具体的数据用图像的形式体现出来,使学生真正意义上理解了正比例的意义,经历用具体数据解释图像,用图像描述具体数据的过程,做到“数”与“形”的有机结合,以帮助学生构建立体的概念模型,并为今后函数知识的学习奠定了有力的知识基础。整个教学过程使学生在观察中思考,在思考中探索,在探索中交流,在交流中获得了新知。
苏霍姆林斯基说过:“在人的心灵深处,总有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者、探索者。”这种需要在儿童的身上表现得更为突出。一旦学生的学习兴趣被激发起来,他们就希望通过自己的努力来获取知识,从而体验成功的喜悦。
考虑到学生学习基础、能力的差异,练习设计为学生提供多层次、多种类的选择,以满足不同层次学生发展的需要。以上的几个练习分成三个层次,设置了三个智力台阶(基础性练习、综合性练习、拓展性练习),适合不同层次学生的需要,为不同层次的学生提供取得成功机会,使他们在练习中获得成功的体验,树立积极自信的信心。
现在数学与实际生活联系越来越密切,应用性越来越强,我在这节课的练习设计也反映这一特点,其中有许多与现实生活及各行各业密切联系的习题,既有学生做练习,骑车上学,又有学校烧煤、买课桌,农民播种,工厂运货物等问题。使学生体会到数学来源于现实生活,又服务于现实生活的特点,体现数学的应用性。
昨天区教研员吴老师到我们学校来指导教案,给我带来很大的帮助。耐心的吴老师,帮我把课的重点应该怎么突出,难点应该怎么化解讲了一遍。细心的吴老师,还建议我去参考一下国标本中的相关内容。匆匆忙忙不够认真的我,却忘记带笔和本子做记录,只能凭大脑记忆思路了,而我当时还没有备课(原本没打算上这课的)。只好从一下班就开始加紧,一直到晚上十一点,教案和课件才完成(先自我反省一下)。
总体感觉这篇教学设计的思路比较有条理,一开始复习比的相关知识,由求比值引入根据比值是否相等来进行分类,从而得出比例的意义,而通过观察比例,发现组成比例的条件。在教学例1的过程中,先让学生找到要求的比,再通过比例的意义判断能否组成比例,组成的是怎样的比例式,同时也让学生联系以前的内容对应找出比和比例的区别,使学生不仅能明确比和比例的不同之处,更能对比例的意义产生更进一步的理解。而正因为比例和比不同,所以具有着不同的各部分名称。让学生自学进行了解各部分名称,用一组前面用过的练习题让学生找出比例的内项和外项,同时用启发性的问题“你能找出比例中乘积相等的数吗”引导学生自己去观察思考发现外项积等于内项积,从而得到并归纳出比例的基本性质。由此可得到判断两个比能否组成比例的方法。最后进行小结。
上完课后,我自己首先的感觉是虽然有学生自主的探究,但还没能完全放的开,思路还不够开阔。而且因为时间的关系,前面问的比较琐碎后面缺少了五分钟让我把最后一道设计好的开放性的题目出示出来。同时我也在反思如果我再上一遍这节课,我会怎么上?我想到的是前面有的问题比如让学生说判断思路的时候,可以请一两位做代表回答一下就可以了,因为方法已经掌握了,就不需要请太多的人重复说,这样可以抓紧时间让学生做几道灵活一点的题目,比如已经比例中的三个项,如何求第四个项,比如给四个数字,可以组成哪些比例。这些我事先也考虑到了,但是没能教学进去,需要以后注意。我还在想,其实这堂课中概念部分的教学并不难,可以让学生在练习本上适当记录一些关键点,依据关键点回答就可以了,不必要把整个过程都写下来,否则也是耽误时间。我想了很多,但想的大多是在希望自己能在前面更紧凑以扩展后面的思路上。本来我还挺高兴自己在课后能感觉出一点东东的,但后来在听了陈老师的指导后,我才知道自己反思的真肤浅:(
陈老师给我的教学设计提了几点意见:
1,我的复习提问是问一句学生回答一句的,问了三个问题“什么是比”“什么是比值”“怎样求比值”。陈老师说,可以打开一点,直接问:你能回顾出以前学过的比的哪些知识?我一听就感觉出了,自己问的范围很狭小,如果那样问,学生的回忆搜索就被打开了,也许学生不仅能想到比,想到比值,还能想到比的各部分名称,还能想到比的基本性质,这都是和我这节新授课的内容有关联的,复习一下,对于后面比较比和比例的区别有很大的好处。我又反思“我怎么没想到呢?”然后我给自己的解释是,怕学生打的太开耽误时间:(后来我又想,只要学生熟练,其实口答几句话也耽误不了什么时间的。。。哎,我们上课总是会在时间上斤斤计较。。。不够大气。。。
2,我在教学例1的时候本来感觉挺简单的,学生回答的甚至比我想象中的还要好,因为我课前一再强调要回答完整,其实这节课我们学生回答问题我自己挺满意的,因为什么所以什么都说的很完整。但陈老师就点明,可以在这里渗透正比例的意义,因为两个比的比值相等,而它们的比值是什么呢?就是单价。如果买的本数增多,相应的钱数也就是总价也会随之增多。这是我没想到的,我没能想到这个深度。要反省。
3,在比较比和比例的区别的时候,学生说的挺多,什么比例有四个数比有两个数,比是一个比比例是两个比,比没有等号比例有等号。我觉得他们说的都挺对,当时还挺高兴的。后来想想,陈老师说,这都是表面上的区别,而意义上的区别其实才更重要。比是两个数相除,而比例是表示两个比相等的式子,从意义上来说就完全不一样,这对突出本节课的重点比例的意义就很有帮助。我一想,对哦,还是自己考虑不完善。而且从意义上的区别说下去后,正因为他们的意义不同,比有前项后项,那么比例中的四个数应该叫什么呢?就可以顺利引入下面的内容比例的各部分名称。
4,陈老师提的第4点是我上完课就想到的,就是练习题的开放性不够,判断两个比能否组成比例不只有意义和性质两种思路,其实还可以用化简比来求,我本来想在开放性的题目中通过让学生自己的探索去发现的,但没能来及上到这里就下课了,少了五分钟。
非常感谢陈老师的指导,为我在课堂教学及内容设计的“广”和“深”上都提供了很大的帮助,让我知道要上好一节课确实很不容易,自己备完感觉好象过程挺流畅了,但其实认真思考下来,可推敲的地方还有很多,可挖掘的地方也还有很多。谢谢老师的指导!希望陈老师朱老师有空的时候多到我们学校来指导指导我们,我很希望自己可以做到更好!
接到学期公开课任务的当天晚上就开始着手准备,查找相关资料,做到心中有数,怕自己做的不好,很是紧张。第二天先写好了常规的教学设计,也算是雏形已定。我觉得对我自己来说,教学设计一定要先把握好教学目标的分析,所以我参照要求设定了合适的`教学目标。初稿是按照流水帐形式,和平时上课一样,按照复习引入、讲授新课、分析例题、练习巩固、归纳小结、布置作业等程序进行。初稿交给指导老师后,孟主任建议其中的复习引入环节做大的调整,对习题的设置也给出了指导建议,修改后流畅了很多。随后设计了学卷,给董老师把关指导。因为我定位于层次相对高的学生,在习题的数量设置、坡度设置上不合理,难度不适宜。有些题目过于简单,毫无价值;而有些则过难,在课堂上会耽误很多时间,于是想到变式训练,在题目设置的顺序和难度上下工夫。
在第一次试讲后,发现引入部分太拖沓,用了10分钟时间才归纳得出反比例函数的定义和形式,随后的两个针对定义设计的稍难的题目就直接跨过到待定系数法求反比例函数解析式,课程结束得比较匆忙。
在备课组老师的指导下,重新设置了题目的数量,第4题中原来为了复习设置了五个小问题,在函数概念上纠缠过多,反而引起学生理解困难;把引入部分第5题的练习由原来的四个减少到两个,剩下了的两个留在第7题作为练习。由于函数解析式的形式通过归纳与对比形成新知识并不需要太多雷同的题目,这样引入时间大大减少,而列关系式的题目难度并不大,把第一次的逐题讲解变成了答案展示,节约了近10分钟时间。其实开始是对学生的水平不太相信,怕题目过难,学生不能迅速完成,时间证明,引入部分的题目难度不大,学生能迅速完成,而我还是按照自己的想法进行第一次的试讲,所以时间显得很紧张,没有顾及学生的实际水平。
第3题的最后一问“反比例函数kxy=还可以表示成什么的形式” ,这个问题显得很宽泛,学生也无从下手,不知从哪个角度入手,也不明白老师想问的问题到底是什么,这是一个无效的设计。后来结合要求,丽涛说新课只要求学生能辨认出伪装后的反比例函数或者说经过等价变形的反比例函数的形式,因此问题改成了以选择题的形式出现,这样学生也有了一定的目标范围,也不会因为问题设置不合理而耽误过多时间。当他能正确选择出答案时,也说明他知道了这几个答案是由标准形式经历了怎么样的等价变形而得到的。
第6题目更改设计后是使得教学过程流畅了很多且节约了时间,但是在实际上课过程中,对这个问题忽略了,认为学生能直接选择出答案就是他们已经牢记了这些形式。此处应该在学生选择了正确答案后,教师最好再花2分钟的时间讲解下变形过程,同时也回顾了分式的乘法、负指数的意义等知识,加深知识点之间的联系;或者让学生口头回答他选择的理由。总之在这里应该停顿回顾下这个重要的知识点,以加深对新知识的印象,及时总结归纳反比例函数形式的特点,要能突破这个学生理解的难点,要不会对第8题的影响就比较大。
第5题在讲解过程中花了过多的时间,说明前面kxy=及其变形讲解不透彻。k值(反比例系数)不能顺利求出,表示y是的x反比例函数疑惑颇多,讲解费时,在成反比例和反比例函数之间有混淆。经过对比板书,学生明白了题目要求的是y与x成反比例 ,为了巩固对反比例概念的理解,增加了练习6。
在讲解用待定系数法求反比例函数的解析式时,原来只设计了讲解例题,随后的巩固练习与例题几乎完全相同,只是改变了数据而已,这样的题目设计对学生来说是很不愿意接受的,但是用待定系数法求函数的解析式是一个重要的方法,学生必须动手写一次,难度又不能加大太多,怎么办呢?就结合小组活动,让学生动起来。虽然多了考察内容,但是都是最基本的内容,难度没有加大太多,学生也能按照顺序顺利解决问题
课堂归纳小结第一次设计的时候,就是问一句“本节课你有什么收获?”,对于这些宽泛的问题,学生一般都不知怎么回答,所以要紧扣定义,引导学生。这样,学生知道了本节课的内容,也明白了空白处就是本节课的重点要掌握的部分了。
在讲课的过程中,与学生的互动较少,没有充分调动起学生的积极性,自己也有点紧张,学生也有点紧张。 在数次不停修改教学设计的过程中,自己的认识也在不断提高,题目设计水平也有了提高,指导老师,还有我的同事都给了我不少的建议和帮助,才使我的设计更臻完善,在此也感谢他们!
“正比例的意义”教学,是在孩子们掌握了比例的意义和基本性质的基础上进行教学的,着重使孩子们理解正比例的意义。正、反比例知识,内容抽象,孩子们难以接受。学好正比例知识是学习反比例知识的基础。因此,使孩子们正确的理解正比例的意义是本节课的重点。在实际教学中,我注意了以下几点:
1、联系生活,从生活中引入:
数学来源于生活,又服务于生活。关注孩子们已有的生活经验和兴趣,通过现实生活中的素材引入新课,使抽象的数学知识具有丰富的现实背景,为孩子们的数学学习提供了生动活泼、主动的材料与环境。这样,将孩子们带入轻松愉快的学习环境,创设了良好的教学情境,孩子们及时进入状态,手脑并用,课堂气氛十分活跃,将枯燥的知识形象,具体,孩子们易于接受。
2、在观察中思考
小学生学习数学是一个思考的过程,“思考”是孩子们学习数学认知过程的本质特点,是数学的本质特征,可以说,没有思考就没有真正的数学学习。本课教学中,我注意把思考贯穿教学的全过程,让孩子们自己再设计一种情景,并引导孩子们进行观察,从而得出:两个相关联的量,初步渗透正比例的概念。这样的教学,让所有孩子们在观察中思考、在思考中探索、在探索中获得新知,大大地提高了学习的效率。
3、在合作中感悟
新的数学课程标准提倡:引导孩子们以自主探索与合作交流的方式理解数学,解决问题。在本课的设计中,我本着“以学生为主体”的思想,在引导孩子们初步认识了两个相关联的量后,敢于放手让孩子们采取小组合作的方式自学例1,在小组里进行合作探究,做到:孩子们自己能学的自己学,自己能做的自己做,培养合作互动的精神,从而归纳出正比例的意义。
4、在练习中巩固提升
为了及时巩固新知识,完成了练一练习题后,又设计了两道加深题,让孩子们巩固本节课知识。通过练习,要求逐步提高,孩子们的思维也得到了提高;最后引导孩子们自己对知识进行梳理,培养孩子们的归纳能力,使孩子们进一步掌握了正比例的意义。
(1)对教材内容安排的思考
本堂课是在学生学习了正比例的基础上学习反比例,由于学生有了前面学习正比例的基础,加上正比例与反比例在意义上研究的时候存在有一定的共性,因此学生在整堂课的学习上与前面学习的正比例相比有明显的提高。
(2)对练习题型、题量的思考
第一堂课在教学的时候,对于课本上的练一练没有进行选择,要求学生全部解答,结果发现学生化的时间比较多,而且效果也不是特别的理想。有了上次的经验,教师做适当的补充和引导,在第二节课的时候,学生的完成情况就比较理想,时间不多效率也高。
另外,由于在课始的导入环节中的未知每本页数与装订的本书的求解就已经知道求解方法,所遇课堂学生就没有刻意的去讲解,结果从课后的练习第二题来看,学生的掌握情况不是很好,虽然有些同学已经利用的了反比例的方法解答。后来想想本堂课学习的是反比例,既然已经学习了反比例,对于课后安排的这样的习题就不应该还只是利用上节课的方法去解答,应该很好的把这堂课所学习到的知识利用起来,一来是学生进一步理解反比例,二来可以为后面学生学习利用反比例解答应用题留下伏笔。
(3)对正、反比例数量关系的书写的一点思考
在课堂上讲解:长方形的面积一定,它的长和宽。这道题是,想到三角形是否学生也能正确的解答,于是就补充了:三角形的面积一定,它的底与相应的高是不是成反比例?为什么?
这个问题的提出,使我对于为什么教材在安排上引入了利用字母表示有了更好的理解,起初不太清楚为什么要用字母表示,现在想想,字母的标识其实是最能用数学语言来判断是不是成反比例,所以可以写成ah=s(一定)来说明底和高成反比例。这样学生在书写数量关系的时候,思维方法就会更明确。
今天上午的第二节课,我试讲了《正、反比例的意义》。这节课上完以后,给我感触最深的是第一层次(认识量、变量,建立两种相关联的量这个概念)的教学。这个环节处理得很不好(具体的下面介绍),学生没有很好地建立“两种相关联的量”这个概念,也就影响到了对正、反比例意义的理解。
我自己很清楚,不管怎么说,“两种相关联的量”这个概念教学的失误是我造成的,后来我明白了,如果在学生回答了“路程和时间这两种量在变化”后,我顺势说一句“读一读这些数据”,随后再接着问:“谁随着谁变呀?”这样就会很顺畅地得出:路程随着时间的变化而变化(或是时间随着路程变),我们就把这两种量叫做两种相关联的量。最后再用表(2)中的两种量来巩固这个概念。这样的教学设计应该就能够使学生很好地建立这个概念了,也就圆满地完成了这一层的教学内容。
教学内容:人教版新课标小学数学六年级下册《比例的意义和基本性质》P32—34页以及相应的“做一做”,练习六第5题.
教学目标:
知识目标:学生理解和掌握比例的意义和基本性质,认识比例各部分名称,知道比和比例的区别。
能力目标:能应用比例的意义和比例的基本性质正确判断两个比能否组成比例。
情感目标:激发学生的学习兴趣,引导学生自主参与知识探究的全过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生思维。
教学重点:理解比例的意义和基本性质.
教学难点:应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例.
教学理念:充分发挥学生的主体作用,让学生自主参与知识探究的全过程,主动构建新知,发展学生思维,培养学生研究数学的能力。
教学准备:课件
教学过程:
一、激趣导入
1、今天能和在座的同学们一起上课我感到非常高兴,听说同学们都非常聪明、爱动脑筋,课上积极回答问题。今天,我和在座的领导老师们想看一看同学们的表现如何,这节课同学们想不想证明一下自己?
2、请同学们看大屏幕,课件出示P32页四幅图。
二、探究新知
1、比例的意义
师问:
①这四幅图中有什么共同的事物?(齐说)
②这四面国旗出现在什么场合或什么地点?(指生回答)
③这四面国旗的长与宽分别是多少?(指生回答)
④这四面国旗的大小相同吗?
说明:虽然国旗的大小不同,但是,这四面国旗都是按一定的比制作的,那么,我国的国旗法是怎样规定国旗的大小的呢?同学们想不想了解这方面的知识?下面我们就从国旗开始,新知识的学习。
⑤请同学们分别写出这四面国旗长与宽的比并求出比值。(指生回答师板书)
⑥请同学们看我们写出的国旗长与宽的比及求出的比值,谁发现了我国国旗法是怎样规定国旗的大小的?(国旗法规定:国旗的长与宽的比值是3/2也可以说成国旗长与宽的比是3:2)
师问:
①现在我们选取其中的两个比,如:2、4:1、6和60:40。这两个比的比值都是3/2相等。那么这两个比是什么关系?生:相等。
那么我们能用什么符号可以把它们连接成等式?生:等号
谁来用等号把这两个比写成等式?师板书:2、4:1、6=60:40
②如果用比的分数形式来表示这个式子也可写成:或2、4/1、6=60/40
③根据我们写出的四面国旗长与宽的比及比值,你还能找出这样的两个比并用“=”连接成等式吗?(指生回答并说说是怎样找到这两个比相等的?)
师小结:请同学们观察板书的等式,揭示:数学中规定,像这样的式子就叫做比例。(板书:比例)
师:观察这些式子,你能说说什么样的式子叫比例吗?(找3名同学回答)
师:同学们说的比例的意义都正确,不过数学中还可以说得更简洁些。
出示板书:表示两个比相等的式子叫做比例。这就是今天我们学习的第一个新知识。板书:比例的意义
问题:
①从比例的意义可以知道,比例是由几个比组成的?这两个比必须具备什么条件?(板书重点符号)
②判断两个比能不能组成比例,关键要看什么?
③看大屏幕,刚才我们找出的比都是长与宽的比,现在你能找出这四面国旗宽与长的两个比组成比例吗?(指生回答并说说是怎样找到这两个比相等的?)
我们已经了解了比例的意义,下面我来考一考大家:
课件出示P33页做一做1题要求及逐一出示各题,学生回答,教师课件演示。
2、比例各部分名称
师:同学们都知道比的各部分都有自己的名称,那么比例各部分名称叫什么呢?下面请同学们自学P34页前两行及例题。同时思考(课件出示)什么是比例的项?什么是比例的外项?什么是比例的内项?你能举例说明吗?
学生回答上面的问题,教师课件演示。
做一做:指出下面比例的内项和外项(课件出示)
4、5∶2、7=10∶6240/160=144/96
3、比例的基本性质(课件出示)
观察:2、4∶1、6=60∶40
思考:两个内项和两个外项之间有什么关系?看看你能发现什么?(可以相互讨论)
用下面的比例验证你的发现:
6∶10=9∶158∶2=20∶5
你能用一句话把发现的规律说出来吗?(找3名同学回答)
下面我们计算2、4:1、6=60:40的两个內项积与两个外项积,共同验证一下这三位同学发现的规律对不对?集体计算后师问:这三位同学发现的规律对不对?你们发现这个规律了吗?同学们通过自己的观察、计算、验证发现了数学上一个非常重要的规律,同学们真了不起,同学们发现的这个规律就叫做比例的基本性质。(师出示板书,指生读)在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。(这就是今天我们学习的第二个新知识。板书:比例的基本性质)
师:看大屏幕(课件出示)2、4/1、6=60/40
问题:如果把比例写成分数形式,根据比例的基本性质我们应该怎样计算两个内项的积和两个外项的积?
指生回答师小结:把比例写成分数形式,比例的基本性质是不是可以理解为:等号两边的分子和分母分别交叉相乘,积相等。师课件
演示2、4/1、6=60/40→2、4X40=1、6X60
4、我们已经理解了比例的基本性质,那么你能根据比例的基本性质来判断两个比是否可以组成比例吗?
课件出示:你能根据比例的基本性质判断10:2与2、5:0、5是否可以组成比例?
讲解时可启发:如果这两个比能组成比例,哪两个数是內项,,哪两个数是外项,那么根据比例的基本性质,能否计算两个外项的积和两个内项的积。
因为10X0、5=52X2、5=5,所以假设成立,10:2与2、5:0、5能组成比例,即10:2=2、5:0、5
5、你会用比例的基本性质判断两个比是否可以组成比例吗?课件出示P34页做一做题目要求及逐一出示各题,学生回答,教师课件演示
6、师:学习到这里,我们学习了几种判断两个比能否组成比例的方法?
生:两种。一种是根据比例的意义,看两个比的比值是否相等;另一种是根据比例的基本性质,看两个外项和两个內项的积是否相等。
三、巩固新知(课件出示)
做一做,相信你能行!
1、判断
①10∶5=2是比例。()
②在比例里,两个外项的积与两个內项的积的差是O、()
2、填空
①在一个比例中,两个外项互为倒数,其中一个內项是1/9,则另一个內项是()
②2:9=8:()
3、用你喜欢的方法判断下面每组中的两个比是否可以组成比例(P37页5题,逐一出示各题,学生回答,教师课件演示)
四、通过这节课的学习,说说你有什么收获或学到了那些知识?
五、课后作业:搜集生活中的比例,看看比例在生活中的作用?
板书设计比例的意义和基本性质
2、4:1、6=3/260:40=3/2
2、4:1、6=60:40或2、4/1、6=60/40表示两个比相等的式子叫做比例。
2、4:1、6=5:10/32、4;1、6=15:10
5:10/3=15:105:10/3=60:40
60:40=15:10
2、4X40=96在比例里,两个外项的积等于两
1、6X60=96个内项的积。这叫做比例的基本性质。
《比例的意义和基本性质》教学反思
本节课是在学生学过比的意义和性质的基础上教学的,它包括比例的意义和组成比例的各部分名称,比例的基本性质。
教学比例的意义中,我通过出示课本图先了解图意,再写出四面国旗长与宽的比并求比值,根据比值相等进行国旗法教育。然后根据学校里两面国旗的比,得出两个比相等。最后通过四面国旗长与宽的比,写出多个等式,从而概括出比例的意义。其后通过四面国旗宽与长的比巩固比例的意义。比例的意义其实是一种规定,学生只要搞清它“是什么”,而不需要知道“为什么”。本环节让学生先通过观察,比较、抽象概括出比例的意义,这样充分发挥了学生的主体作用,让新知不知不觉被学生掌握理解。
在认识比例的各部分名称时,比例各部分名称我是让学生通过自主看书学习。设计意图是通过重视自学,培养良好的学习习惯。这部分内容非常容易理解,采用自学的方式,通过两个问题检验,培养学生会看书的习惯。在揭示比例的基本性质时,我先让学生先观察比例式,在思考讨论两个內项和两个外项之间的关系,然后观察发现规律,进一步验证规律,最后概括出比例的基本性质。这样学生通过亲身经历的计算、观察、验证、交流表达的活动过程,不仅获得了比例的基本性质,更重要的是在学习科学探究的方法,培养学生主动获取知识的能力。
习题设计时,旨在对比例的意义和基本性质进行进一步的巩固和应用,最后一道开放题答案不唯一,意在巩固新知,开阔视野,培养学生逻辑思维能力。
通过本节课的教学,我深知有意义的数学学习必须建立在学生的主观愿望和知识经验的基础之上,有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。在教学中,我对教材进行了有效的处理,让学生在算一算、想一想、说一说中理解了比例的意义,探究出了比例的基本性质,激发了学生学好数学的信心和积极情感。
我们知道,数学教学的实质是如何教会学生思维。而这节概念课不是对知识简单的复述和再现,恰恰是通过教师的“再创造”,为学生展现出了“活生生”的思维活动过程。于简单的谈话间,简单的提问中,让学生自己观察比较、通过自己分析思考,总结出了“比例”这一数学概念。于不经意的诱导,促使学生自主探究比例的基本性质,通过计算、观察、比较、验证让学生的思维从先前的不知所向到最后的豁然明朗,个个实实在在地当了一名小小“数学家”,经历了一个愉快的探究过程,获得了成功的体验。整节课处处透出浓浓的数学味。
本节课把比例的意义和基本性质放在一起学习觉得内容较多,完成教学有些困难,同时比例的灵活应用题目没有达到预先的效果有些遗憾,同时比例在生活中的应用再多一些题目就好了,让学生更加深刻地体会到数学和生活的密切联系。
本堂课是在学生学习了正比例的基础上学习反比例,由于学生有了前面学习正比例的基础,加上正比例与反比例在意义上研究的时候存在有一定的共性,因此学生在整堂课的学习上与前面学习的正比例相比有明显的提高,而且在课时的安排上,在学习正比例的安排了2个课时,这里只是安排了1个课时,紧随着课之后教材安排了一堂正反比例比较、综合的一堂课,对学生在出现正反比例有点模糊的时候就及时地加以纠正。
反比例关系和正比例关系一样,是比较重要的一种数量关系,学生理解并掌握了这种数量关系,可以加深对比例的理解,并能应用它解决一些简单的正、反比例方面的实际问题。同时通过反比例的教学,可以进一步渗透函数思想,为学生今后学习中学数学和物理、化学打下基础。反比例的意义这部分内容是在学生理解并掌握比和比例的意义、性质的基础上进行教学的,但概念比较抽象,学习难度比较大,是六年级教学内容的一个教学重点也是一个教学难点。
在教学反比例的意义时,我首先通过复习,巩固学生对正比例意义的理解。然后安排准备题正比例的判断,从中发现第3小题不成正比例,从而引入学习内容和学习目标。这通过复习、比较,不成正比例,那么它成不成比例呢?又会成什么比例?通过设疑不仅激发了学生学习数学的兴趣,还激起了学生自主参与的积极性和主动性,为自主探究新知创造了条件并激发了积极的情感态度。因为反比例的意义这一部分的内容的编排跟正比例的意义比较相似,在教学反比例的意义时,我以学生学习的正比例的意义为基础,在学生之间创设了一种自主探究、相互交流、相互合作的关系,让学生主动、自觉地去观察、分析、概括、发现规律,培养了学生的自主探究的能力。在学完例3后,我并没有急于让学生概括出反比例的意义,而是让学生按照学习例3的方法学习试一试,接着对例3和试一试进行比较,得出它们的相同点,在此基础上来揭示反比例的意义,就显得水道渠成了。然后,再通过“想一想”中两种相关联的量进行判断,以加深学生对反比例意义的理解。最后,通过学生对正反比例意义的对比,加强了知识的内在联系,通过区别不同的概念,巩固了知识。并通过练习,使学生加深对概念的理解。
通过这节课的教学我深深的体会到要上一堂数学课难,上好一堂数学课更难,课前虽做了充分的准备,但还是存在不少问题。比如练习题安排难易不到位。由于学生刚接触反比例的意义,应多练习学生接触较多的题目,使学生的基础得到巩固,不能让难题把学生刚建立起的知识结构冲跨。参与学生的探究不够。亲其师信其道,那么亲其生知其道不为过,真正融入学生才能体会学生的思想才能真正落实教学新理念。
当然,教学过程中还或多或少存在其它的问题,但有问题就有收获,在以后的教学中,认真反思,仔细分析,查找根源寻求对策,在教学的道路上不断攀登。
----------------------
上完课后,虽然看了听课老师给我的评价,但我一直在思考,学生是怎么评价的呢?在学生眼里,到底哪个地方出问题了呢?突然,灵机一动,干脆和学生一起交流一下吧,也许效果还更好呢?通过与学生交谈,让大家一起再次回顾本节课,找一找优点和不足,学生的回答很是让我惊奇,现摘录如下:
优点:
1、课堂导入新颖、有趣、有效,结尾有所创新,改变了以前“通过本节课的学习,大家有什么收获呢?”等传统方式,从而使得大家大家想学、乐学;
2、老师讲的详细,特别是讲授两种相关联的量,用通俗、简单的语言让大家一听就明白了,并且很快就可以判断出是否是两种相关联的量;
3、题目与现实生活联系紧密,让大家感觉学习数学很有用;
4、课堂上学生讨论的时间充足,参与度较高,且时效性较强;
5、课堂调控能力较强,有自己的教学风格;
6、板书明确、清晰,一目了然;
7、设计合理,处理偶发事件的能力较强。
缺点:
1、课堂气氛没有以前活跃;
2、知识量太大,难度较大,很少有不经过思考或稍作思考就能回答出来的问题;
3、小组合作时,没有分好工,导致在计算相对应的每组数的和、差、积、商时,每个同学都在计算,因而用的时间较多,如果四人小组分好工,没人计算一种运算,时间就会节约一半。
4、对学生的鼓励性语言欠缺;
5、板书中的字体不太规范,要加强基本功的训练;
针对听课老师和学生的评价,在以后的教学中,我会发扬优点、克服不足,不断提高自己的教学水平。
这部分内容是在教学过比和比例的知识的基础上进行教学的,着重使学生理解正比例的意义。单从教材的量来看,书本从第11页至13页,满满的三页纸,要比一般的语文课文还要长,从这点上让我感受到教学难度相当大。从内容上看,“成正比例的量”这一内容,在整个小学阶段是一个较抽象的概念,他不仅要让学生理解其意义,还要学会判断两种是否是成正比例的量,同时还要理解用字母公式来表示正比例关系,要渗透给学生一些函数的思想,为以后初中学习打下基础。
根据教材和内容的特点,我选择了师生互动,以教师的“引”为主导,学生为主体,让学生在互动交流中去理解成正比例的量这一概念。首先,让学生弄清什么叫“两种相关联”的量,我引导学生去从表格中去发现时间和路程两种量的变化情况,在变化中发现:路程随着时间的变化而变化的,同时引导学生初步感知成正比例的两种量的变化方向性。其次,我进一步引导学生考虑:路程随着时间的变化而变化,在这一变化过程中,有什么规律呢?学生看了表中之后,发现路程和时间比的比值是一样的,都是90。这时,教师也举了一个例子,就是450÷9=50,从反面的例子,让学生理解相对应的路程和时间的比的比值都是90,从而突破了正比例关系的第二个难点。两种量中相对应的两个数的比会一定。把学生对成正比例量的意义的理解成一系统。由于学生还是第一次接触这一概念,之后,例2的学习还是让学生对比着例1来自己理解数量和总价的正比例关系。最后,再两个例题学习的基础上总结出成正比例量的意义,把这意义从局部的路程和时间、数量和总价推广到其他数量之间的关系。
本节课是在学生学过比的意义和性质的基础上教学的,它包括比例的意义和组成比例的各部分名称,比例的基本性质及应用比例的基本性质解比例问题。
通过复习求比值,找出比值相等的比,为教学比例的意义做好铺垫工作,然后再通过例题,得出两个比的比值相等,从而概括出比例的意义,再利用比例意义判断两个比能否组成比例,我们安排了让学生写出比值相等的比,再组成比例,目的在于加深对比例意义的认识和理解。同时也让学生联系以前的内容对应找出比和比例的区别,使学生不仅能明确比和比例的不同之处,更能对比例的意义产生更进一步的理解。而正因为比例和比不同,所以具有着不同的各部分名称。让学生自学进行了解各部分名称,用一组前面用过的练习题让学生找出比例的内项和外项,同时用启发性的问题“你能找出比例中乘积相等的数吗”引导学生自己去观察思考发现外项积等于内项积,从而得到并归纳出比例的基本性质。由此可得到判断两个比能否组成比例的方法。最后进行小结。
上完课后,我们首先的感觉是虽然有学生自主的探究,但还没能完全放的开,思路还不够开阔。
我的复习提问是问一句学生回答一句的,问了三个问题“什么是比”“什么是比值”“怎样求比值”。在教学例1的时候本来感觉挺简单的,学生回答的甚至比我们想象中的还要好,因为我们课前一再强调要回答完整,其实这节课我们学生回答问题我们自己挺满意的,因为什么所以什么都说的很完整。课后我们反思,可以在这里渗透正比例的意义,因为两个比的比值相等,而它们的比值是什么呢?就是工作效率。如果耕地的时间增多,相应的耕地的公顷数也就是工作总量也会随之增多。这是我们当时没想到的,我们没能想到这个深度。要反省。
在比较比和比例的区别的时候,学生说的挺多,什么比例有四个数比有两个数,比是一个比比例是两个比,比没有等号比例有等号。我觉得他们说的都挺对,当时还挺高兴的。后来想想,这都是表面上的区别,而意义上的区别其实才更重要。比是两个数相除,而比例是表示两个比相等的式子,从意义上来说就完全不一样,这对突出本节课的重点比例的意义就很有帮助。在上课时我们有些操之过急,没有让学生充分的去说,有些包办代替,应当多找些学生说一说,让学生更多的了解比和比例的不同。
在这节课中,我感到成功的地方在于教学重点突出,练习有层次,能够在不断的变化形式上加强练习,学生基本上掌握了所学的知识。但是忽视了学生的情感目标,在课堂上教师应当起指导作用,学生起主体作用。学生探究数学的味道还不浓,我们给学生探究的时间不多,我们在学生探究活动中的指导稍弱一些,还应当大胆的让学生进行探究。
为了更好的完成教学任务,我重视从下列几方面做好工作:
一、充分做好新知识教学前的准备工作。
为了学好新知识,我在课的一开始就出示了一组“比”,由这组比,引导学生回忆有关比的知识,如:什么叫做比,比各部分的名称,什么叫做比值,求比值的方法是什么?为后边学习比例意义做好了知识上的准备。
二、创设情境,激发求知欲,形成勇于创新的意识。
为了使学生学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题:形成勇于探索、勇于创新的科学精神。我在新授前将设计这样一段情境:同学们,你们知道吗?在我们的身上也有很多有趣的比,如人的胸围的长度与身高之比是1:2,将拳头滚动一周的长度和脚的长度的比是1:1,人脚的长度与身高的比是1:7。当人们了解了这些,又掌握了这种神奇的本领后,去买袜子只需要把它绕圈一周就知道合适不合适了,而侦察员就能根据罪犯脚印的长度推测出身高。你想拥有这种本领吗?这种神奇的本领就是我们这节课所研究的内容,比例的意义和性质。
三、通过学生动手操作和小组讨论,得出新的知识。
有意义的数学学习必须建立在学生的主观愿望和知识经验的基础之上,有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。
(一)在学习比例的意义 时,我先让学生根据要求亲自动手写人以两个数的比,并求出比值。然后,分析这些比的比值,看发现了什么?在学生充分感知的基础上,揭示比例的意义。在此同时还要使学生在学习过程中,理解比值相等时组成比例的核心,在判断两个比能不能组成比例时,关键看这两个比的比值是否相等。为强化理解在这时我安排了两种形式的练习:1、判断。2、组比例。最后通过小组讨论:比与比例的联系与区别,并揭示数学知识不是孤立的,而它们之间都存在着密切的联系。
(二)在比例的基本性质教学过程中我是分三步进行的:
第一步,先由老师说明比例各部分的名称,同时提示比例还可以写成分数的形式,并由学生自己标出所写的内项、外项。
第二步,通过学生自己计算内项的积和外项的积,发现比例的基本性质并加以概括。
第三步,为了进一步加深对比例的基本性质的理解,我精心设计了由易到难得三种类型练习。
(三)为了充分体现数学知识与现实社会的联系,在课的最后我安排了一个在今后工作中会遇到、学生又很感兴趣的问题:某罪犯作案后逃离现场,只留下一只长25厘米的脚印。已知脚的长度与人体身高之比是1:7,你能推测罪犯身高大约是多少吗?这样渗透了学数学用数学的教学思想,同时也潜移默化的帮助学生树立了学好文化知识有利于社会发展的意识。
让学生在生动具体的情境中主动学习。数学活动是让学生经历一个数学化的过程,也就是让学生从自己的数学经验出发,经过自己的思考,概括或发现有关数学结论的过程。例如教学《比例的意义和性质》时,我在新授前将设计这样一段情境:同学们,你们知道吗?在我们的身上也有很多有趣的比,如人的胸围的长度与身高之比是1:2,将拳头滚动一周的长度和脚的长度的比是1:1,人脚的长度与身高的比是1:7。当人们了解了这些,又掌握了这种神奇的本领后,去买袜子只需要把它绕圈一周就知道何适不合适了,而侦察员就能根据罪犯脚印的长度推测出身高。你想拥有这种本领吗?这种神奇的本领就是我们这节课所研究的内容,比例的意义和性质。
在活动中相互交流,相互启发,相互鼓励,共同体验成功的快乐。例如在讨论圆的周长是不是直径时,有的学生运用直观的看、比或量的方法来判断半圆弧比直径长,而有的学生却运用两点之间的曲线比线段长来推理,这是两种不同水平的思维。最后教师可以将学生的思维从具体思维水平又引向抽象逻辑思维水平,促进学生思维的发展。象这样给学生提供充分从事数学活动的机会,学生在观察中思考,在思考中猜测,在操作中验证,在交流中发现,在阅读中理解,使课堂形成多方的互动,多向交流,充分发挥学生的主体作用,从而不仅仅是获得知识,更重要的是态度、思想、方法,是一种探究的品质,这对他们后续知识的学习将有较大的影响,为学生的终身学习奠定基础。
《数学课程标准》中指出:“学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。”因此上完这节课我比较满意的地方有:
一、猜想导课,激发探究愿望
猜想是一种创造性思维。牛顿说:“没有大胆的猜想,就没有伟大的发明和发现。”课一开始我就引导学生猜测两种量还可能成什么比例,学生很自然想到反比例,然后我问学生想学会反比例的哪些知识,再让学生猜测这些知识,对反比例的意义展开合理的猜想。这一环节设计巧妙,符合学生的认知规律,同时也激起了学生探究问题的强烈愿望。
二、创造性地使用教材
这节课教材上的例题是由例一变化来的,教学正比例时,我也是自己重新编写了例题,因为我感觉利用圆柱的体积、底面积和高这三种量认识正、反比例对学生来说有些抽象,不接近生活。因此,我借鉴了学生读《安徒生童话选》这一事例,学生感觉这就是发生在学生身上的事,亲切易懂,并且愿意在这个表格中找寻规律,进而总结出反比例的意义。
《正比例的意义》是在学生学习了比和比例的基础上进行教学的,教学的重点与难点都是要让学生理解正比例的意义,并初步学会判断两种相关联的量是不是成正比例关系,同时向学生渗透初步的函数思想。对于小学生来说,这部分内容还比较抽象,在理解上具有一定难度。因此,我教学本课的主导思想是:让学生在观察、比较熟悉的数量关系,体验数量的变化规律,进而进行归纳概括,经历由形象到抽象,由具体到一般的抽象思维过程。
在实际的教学过程中,学生发现两个量之间的变化情况(一个量扩大,另一个量也随着扩大;一个量缩小,另一个量也随着缩小,但是比值不变)并不存在多大难度。关键是让学生把这种规律和正比例的意义建立思维联系,让学生深刻理解比值一定的意义。
我主要是通过这几个问题在学生观察与思维之间搭建桥梁的:
1、表中的这些数据可以组成比例吗?请你写出几组比例。
2、你是怎样正比例中的“正”呢?(一个量扩大,另一个量也扩大;一个量缩小另一个量也缩小,变化趋势是一致的。)
3、体积和高的比值,也就是底面积为什么不变呢?你能用学过的知识说明吗?【根据比的基本性质,比的前项和后项同时乘或除以相同的数(0除外)比值不变。】
4、你是怎样理解底面积一定呢?(一定就是指底面积不随着体积和高的变化而变化,也就是说不管体积和高怎样变化,底面积总是一个固定的数。)
通过对这几个问题的思考和讨论,学生对正比例的意义的理解可能会深刻一些,也就不太容易和后面学习的《反比例的意义》相混淆。
在后面练习拓展的过程中,我发现有部分学生对比值一定这个概念的理解还不是太深刻。
比如判断:
圆的面积和它的半径成不成正比例。学生计算出它们的比值是圆周率乘半径,仍有部分学生认为一个圆的半径是固定不变的,所以它们的比值也是不变的,出就是圆的面积和它的半径正比例。看来学生对比值一定这个概念的理解还是有一定难度的。