数的奇偶性的教学反思

李盛

  1、创设问题情境的目的在于上课时创设一种学生探索的氛围,以激发学生的学习兴趣,为学生提供自我表现的机会,培养学生的问题意识,根据学生对游戏更感兴趣的特点。我设计了翻手掌的游戏活动,从课堂的效果看学生非常感兴趣争先恐后跃跃欲试,但在翻100次后,学生试过几十次之后,停下了,同学们的学习情绪逐步高涨,要急于发现规律。这时学教师适时抓住学生好奇的时机,提出“你发现了什么规律呢?”的问题,这一提问适时地把学生引入到探究的问题中。

  2、重视学生活动,引导学生用“经历尝试列式计算—初步得出结论—举例验证—得出结论”的学习方法解决奇数、偶数相加减的规律,提高学生推理能力。

  3、本节课,教材上仅有两个活动和两个“试一试”,练习几乎没有,两个活动的探索过程也非常简单,学生稍作思考就能得到正确的答案。课前,我查阅了一些资料,将“翻杯子游戏”和“探索整数加减法得数的奇偶性”进一步拓展,并增加了一些练习,使内容更加丰满,但是练习的典型性、层次性仍然不够,还需要改进。

  4、对于数的奇偶性的运用的举例有些不恰当。我应该利用课堂中生成的资源灵活练习。

  5、数学课上的板书必须要能诠释重点,疏通难点。我的板书太简单了。

  6、我能用自己的情感感染学生的情感,用我的态度影响学生的态度,让学生在乐中玩,玩中思,充分完成了教学任务,达到了教学目标。

  7、对学生适时评价,让学生感受到成功的喜悦。

  反思这堂课,我觉得应及时审视自己的教学,调控学生的情绪,引导学生积极参与到课堂中。在练习题的设计中,可以利用课堂中生成的资源灵活练习,而不是一成不变的,这就要求教师正确处理好预设与生成的资源。还应该提高自己的应变能力,处理好课堂随机生成的随机情境,加强对学生及时准确恰当的评价。

  附加阅读:数的奇偶性教学方案

  【教学内容】

  北师大版小学数学五年级上册第一单元14-15页《数的奇偶性》

  【学习目标】

  1、尝试运用“列表”“画示意图”等方法发现规律,运用数的奇偶性解决生活中的一些简单的问题。

  2、经历探索加法中数的奇偶性变化的过程,在活动中发现计算中数的奇偶性的变化规律,在活动中体验研究方法,提高推理能力。

  3、在学习“数的奇偶性”的活动中,能组织学生积极参与数学学习活动,用我的情感塑造学生的情感。

  教学重点:发现加减法中数的奇偶性的变化规律

  教学难点:能应用数的奇偶性分析和解释生活中一些简单问题

  【教学准备】据学生实际多媒体教学课件

  【教学过程】

  一、创设情景,激发学生的求知欲望

  同学们喜欢做游戏吗?(喜欢),下面老师就和你们一起来做游戏——翻手掌),大家玩过了吗?其实在翻手掌中也有许多数学知识,你留心了吗?今天老师就看谁细心观察,在翻手掌中获得数学规律,大家有信心吗?

  [设计意图:用学生喜欢的游戏开课,既激发了学生的学习兴趣,又明确了本节课的任务:看谁细心观察,在翻手掌中获得数学规律。]

  二、探索新知

  (一)、 让学生感受生活中的'奇偶性

  活动一:师生互动,组织学生通过多种方法发现规律(在游戏——翻手掌中发现规律)

  1、让全体学生做游戏(翻手掌)

  课件出示游戏规则:所有学生手心向下,然后依次手心向上还是向下,再把手心向下,这样来回翻。

  2、思考你翻5次后,手心向下还是向上?开始游戏

  学生交流:你是怎样想的?

  3、思考你翻11次后,手心向下还是向上?开始游戏

  学生交流:你是怎样想的?

  4、思考你翻100次后,手心向下还是向上?开始游戏

  (为什么有的同学停下来了,要翻1000次、9999次怎么办呢?)

  [设计意图:让学生由少到多,由易到难,感受翻手掌游戏,感悟翻手掌中的数学规律。]

  5、思考:要解决翻100次后你的手心向下还是向上?该怎么办?

  (1)独立思考

  (2)集体汇报交流

  (3)老师进行解决问题方法的指导:列表或画图。

  [设计意图:这是本节课的此环节中的一个重点,留给学生独立思考的空间和时间,重点让学生用自己的方法发现规律.]

  6、通过解决这些问题,观察板书,你有什么发现?

  翻奇数次后,手心朝 。

  翻偶数次后,手心朝 。

  7、学以致用:翻100次、1000次、9999次,手心向上还是向下?

  8、思考:只要确定第几次的位置,就能确定所有奇数次的位置?也就能确定所有偶数次的位置?

  9思考:有人说手心翻了999次后,手心向下,这种说法对吗?为什么?

  10、同桌问一问:手心翻了()次后,手心向(),为什么?

  [设计意图:学习致用:主要考察学生对于翻手掌中发现的规律理解和运用的怎么样]

  活动二:扩展延伸、巩固所学

  1、原来利用数的奇偶性可以帮助我们解决一些问题。

  (1)请同学用手里的杯子,完成第14页的试一试 (课件出示:一个杯子杯口朝上放在桌上,翻动1次杯口朝下,翻动2次杯口朝上。翻动10次后,杯口朝 ,翻动19次后杯口朝。尝试说说理由)

  A、独立思考

  B、集体交流,指名说说自己的想法

  (2)体会奇偶数的相对性

  改变杯子开始状态杯口朝下,看有什么规律

  质疑 :为什么刚才奇数次杯口朝下,现在奇数次的杯口确向上呢?

  小结:因为每次的起点不一样。所以的奇数次位置也会发生改变。但我们只要记住第一次的位置,就可以以不变应万变。

  [此环节总的设计意图: 通过改变杯子的开始状态,让学生体会奇偶数的相对性,让学生关注开始状态或第一次的情况,以突破难点]

  2、结合生活实际,运用所学解决问题

  根据你的生活经验,你能举出和今天学习的类似的例子吗?

  [此环节总的设计意图: 通过翻手掌的游戏情境让学生体会数的奇偶性规律,发现翻手掌中的规律,并会利用数的奇偶性规律解决生活中简单的实际问题。]

  (二)自主探究奇偶性在计算中的作用

  1、出示下面的数,让学生判断圈里、方框框里的数各是什么数?

  1、11、21、49、21、25、37、3、101、87

  2、12、18、20、6、34、80、16、52

  偶数

  奇数

  2、探究奇偶性的规律:

  (1)你们从圆中任意选两个数相加或相减,我就能判断它们的和或差是奇数还是偶数?(不信或信)

  想知道老师这么快说出来的奥秘吗?

  [设计意图:让学生考一考老师,目的为了让学生初步感数的奇偶性的规律,并能激发学生的求知欲望。]

  (2)让学生从正方形中任选2个数相加或相减,看你能发现什么规律?

  (3)再写几组两个偶数相加减的算式,进行验证.

  (4)得出结论:当两数都是偶数时,加减后的结果一定是偶数。

  [设计意图: 让学生经历尝试列式计算—初步得出结论—举例验证—得出结论过程,探索偶数相加减的规律,初步提高学生推理能力。]

  (5)如果从圆中任选两个数他们的和或差是奇数还是偶数?尝试验证并得出结论。

  当两数都是偶数时,加减后的结果一定是偶数

  [设计意图: 让学生经历尝试列式计算—初步得出结论—举例验证—得出结论过程,探索奇数相加减的规律,提高学生推理能力。]

  (6)如果要使两个数他们的和或差是奇数,该怎么办?

  个别学生可能说:我想从圆中任选一个数再从正方形中任选一个数,他们的和是奇数。

  让学生尝试验证并得出结论当两数一个是偶数、一个是奇数时,加减后的结果一定是奇数

  [设计意图: 让学生独立经历尝试列式计算—初步得出结论—举例验证—得出结论过程,探索奇数相加的规律,提高学生推理能力。]

  (三步的设计意图:教师由扶到半扶半放最后到放手让学生发现数学计算中的奇偶变化规律。)

  3、总结:通过刚才的研究,你们发现了什么规律?(能用一句话概括吗?

  (1)、对于确定的两个数,无论加法还是减法,运算后的奇偶性是一样的。

  (2)、当两数的奇偶性相同时,加减后的结果一定是偶数;当两数的奇偶性不同时,加减后的结果一定是奇数。

  [设计意图: 通过以上三个环节的探索,让学生总结规律,提高学生的表达能力。]

  4、考考你:完成数学书上15页第(7)题:判断下列算式的结果是奇数还是偶数

  10389+2004 11387+131 268+1024

  287-163 357-168 1024-268 1024-267

  思考:你是怎样判断的?

  5、你敢来挑战吗?

  2+4+6+8+10……+998+1000

  2+4+6+8+10……+998+1000+1

  同学们学得很好,掌握了这些规律,我们就可以发现生活中的一些小秘密。

  [设计意图: 学以致用:关注所有题型,由易到难,很有层次地考察学生对于数学计算中的奇偶变化规律掌握的怎么样。]

  三、实践应用,解决问题

  1、小 小 编 辑

  你能从我们天天翻看的数学书里发现有关数的奇偶性的问题吗?

  A、独立思考。

  B、集体交流。

  打开和闭合书分别对应着翻的次数;奇数页在正面,偶数页在背面……

  2、开关的秘密

  一天晚上,淘气在家做作业时停电了,(此开关为一开一关)淘气按了12次开关,等到来电时,灯亮着还是不亮?假若按了201次开关呢?

  (1)独立思考,同桌讨论。

  (2)集体交流。

  [设计意图: 总的考察学生运用知识的能力,让学生真正能应用数的奇偶性分析和解释生活中一些简单问题,突破难点,达到教学目标。]

  四、畅谈收获

  你学到了什么?

  [设计意图: 畅谈收获,主要是让学生总结知识的学习过程及学习方法、结论,让学生学会反思。]

  五、实践作业的布置

  判断结果的奇偶性,并说说你发现了什么?

  207-13

  207-13-11

  207-13-11-43

  207-13-11-43-25

  207-13-11-43-25-49