今天早上在教学评估活动中,我讲授了《三角形三边的关系》一课,我对这一节课有以下点反思:
1、情景创设要以学生生活为基础,以更好地服务于教学内容为标准。
数学教学应结合生活实际问题和从学生已有的知识出发,使学生能在认识、学习和使用数学知识的过程中,初步体验到数学知识之间的联系,进一步感受到数学与现实生活的密切联系,增强学好数学的信心,培养应用数学的意识和能力。学生在生活中已经明确知道的拐弯要比走直路远,利用这一生活经验,我在这一课的开始借鉴了课本中把学生从家到学校多路选择的场景来激发学生的兴趣,使学生感觉更亲切自然。但是在这儿我有意识的对课本原图作了一些改变,取消了原图中经过商店的一条道路,目的是让学生更容易把三点之间的道路抽象成三角形,跟本节内容更容易过渡衔接,跟以前教学本节内容时相比,我认为效果还是不错的。
2、小组活动要精心设计,力求有序有效、目的明确、可操作性强。
新课程标准认为,数学的知识、思想和方法应由学生在现实的数学活动中加以理解,通过实践活动,让学生获得更多的直接经验,从而激发学生的求知欲、增进自信心,从学生已有的生活经验和已有的知识出发,给学生提供观察、操作、实验、讨论、及独立思考的机会,通过共同的讨论交流,从而得出结论。因此,在数学活动中,要充分给予学生动手和思考的空间,同时要保证学生活动的有序性,从而实现活动的有效性。为了达到这一效果,我在这节课数学活动的设计中,注意了教师引导,在活动中从“有什么发现”到“为什么这样”逐层提出问题,让学生始终明确方向,有动手的强烈欲望,从而避免了以往教学过程中部分学生重结论轻过程,甚至直接去课本中寻找结论的现象,进一步培养了学生深入探究的习惯和能力。
3、汇报交流过程中,教师要注意把握重点,选例有针对性。
每次活动过程中及结束后,必然存在讨论交流的过程,这其中包括小组内的交流和在全班汇报交流。汇报不是小组交流的重复,在汇报过程中要看抓住具有代表性的例子,在存疑处适时引发下一次的实验活动及讨论过程。本课在小组汇报实验结果后,我先选择不能组成三角形的两组小棒组织学生讨论,并在大屏幕上动态演示,学生的注意力很自然地引导到研究三角形两边之和与第三边之间的关系。在此基础上,再一次组织小组讨论,研究其他几组能围成三角形的小棒的长度有什么共同点。通过比较分析,学生自然而然地发现了“三角形任意两边之和大于第三边”的规律。
4、练习设计向教学目标层层推进,注重强化知识生成及应用。
练习是数学教学重要的组成部分,恰到好处的练习,不仅可以巩固知识,形成技能,而且还可以启发思维,培养能力。在教学过程中除了为强化巩固设计的一般练习题,还要根据教学目标设计一些综合性题目和开放型题目,可以培养学生思维的灵活性和深刻性,克服学生思维的呆板性,更主要的是能激发学生求知的欲望、学习数学的兴趣。本节课中,我围绕“三角形任意两边之和大于第三边”这一性质设计了较为简单的“练一练”,目的是让学生正确应用知识;又通过设计“算一算”,目的是让学生充分理解三角形三边的关系,会求已知两条边,第三条边最小可以是几;又设计了“挑战自己”题目,此题为后面用字母表示三角形三条边的关系奠定了基础(a+b>ca+c>bb+c>a);最后一题设计了“做一做”,这道题目有一定难度,能够综合培养学生深入理解知识、灵活运用知识、学会有序思考、发展逻辑思维等多方面作用。总归,环环相扣的练习能使学生熟练正确的掌握知识。总得来说,这节课也留下了许多缺憾和不足,主要表现在:
1、学生动手操作、同伴互助不够充分,学生主观能动性没有调动起来,没能让学生充分体验到学习数学所带来的乐趣;
2、让学生总结“三角形三边的关系”时,学生尽管能说出“任意”两边之和大于第三边就能围成三角形,但在这个环节中我给学生说的机会不多,没能让更多的学生尝试说一说;
3、在分小组探讨“三角形三边的关系”性质时,由于担心耗时过多,怕完成不了后面的练习题目,没能放手让学生大胆、自主地探索三角形三边的关系;
4、本节课我的数学语言不够精准,说得有点儿多,显得啰嗦。
在教学《三角形三边之间的关系》一课时,学生在任选长短不一的小棒围三角形的时候发现并不是任意三根小棒都可以围成三角形,这是为什么呢?引出课题。出示书里的情境,从邮局到杏云村,走哪条路最近?为什么?是不是所有的两边之和都大于第三边呢?学生通过画三角形、摆三角形验证三角形任意两边之和大于第三边的结论。这样学生容易掌握。荷兰数学教育家弗赖登塔尔认为,学习数学唯一正确的方法是让学生进行“再创造”,教师的任务是引导,帮助(包括设计合适的活动或作业)学生去进行这种再创造的工作,而不是把现成的知识灌输给学生。本课教学设计,我力求突破传统的教学模式,在学生获取知识的过程中,大胆放手,鼓励学生参与数学实验,探索和发现数学规律,培养学生探索精神和科学态度,取得了较好的教学效果。
1、让学生成为数学学习的主人。
本节课通过动手操作,充分激发学生的学习兴趣,让学生逐步完成知识的学习建构,真正成为学习的主人。一开始,我设计了让学生动手搭建三角形的活动,在操作活动的基础上,学生进行反思(为什么①和②不能围成三角形?),发现并猜想到:三角形任意两边长度之和大于第三边。接着,我组织学生通过在小组内画一画,量一量,比一比等活动,验证了三角形任意两边的和大于第三边。活动培养了学生从个别到一般的归纳思维。整节课,学生学习热情高,积极参与,课堂学习氛围浓厚。
2、发挥教师在教学活动中的.主导者,调控者的作用。
教师作为教学活动的主导者、调控者,应有意留足时空,抓住重点字词引导学生在“无疑中生疑”,把问题发现的机会提供给学生,培养学生的发现意识,进而通过在“活跃”的实践操作中进行“冷静”反思,相互讨论,举例验证等方式主动释疑。本节课设计了两个关键问题:一个是,为什么①和②不能围成三角形;另一个,针对“任意”含义的理解提出的,同学们刚才实验得出①和②不能围成三角形,而在①中,3+7>4呀,两边之和大于第三边!通过两个问题的思考,学生对“三角形任意两边的和大于第三边”有了更深刻的理解。
3、采用小组合作学习,引导学生自主合作、探究研讨,注重培养学生协作意识。
本节课,我两次采用了小组合作学习,第一次是在学生动手搭建三角形的活动时候,第二次是在验证猜想的活动时候。两次小组合作学习,我都提出了具体的活动要求,组织学生分工明确,并且第一次的活动要求比第二次更具体更细化。小组活动让每一个学生都有机会参与,充分享有发言权,并能及时发现自己思维过程中的疑结,修正了自己的不足,同时学会了合作,学会了从他人智慧中获得启迪。我崇尚这种学习方式。
“三角形的三边关系”是人教版数学四年级下册的内容,这节课的内容安排在三角形特征之后,分类之前进行教学的。教材首先呈现了小明从家去学校的生活场景,通过这样一个学生熟悉的生活情景,引发学生对三角形三边的思考,接着呈现学生以小组合作学习的方式进行合作、探究、发现规律,形成结论的过程,最后揭示“为什么小明上学走中间这条路最近?”所蕴含的道理,体现了数学源于生活,反过来服务于生活的数学理念。
而我对这一部分教学内容进行了重组。首先我出示了分別由三条线段组成的三个图形,让学生说“哪个是三角形?”学生很容易找到,接着问他们“什么是三角形了?”学生说后出示小学和初中课本中的三角形定义,目的是为了夯实三角形的概念,从而为下面的动手实践“围三角形”扫清障碍。接着,我安排了两次动手操作活动,使学生在动手、动口、动脑等活动中,初步感悟,理解三角形三边的关系,为下一次环节规律的总结,知识的建构做好充分的准备,同时,用课件直观演示“围三角形”的过程和用投影仪展示“画一画,比一比”的结果,使学生理解了三角形三边之间的关系,再次把学生的思维激活,从而进一步深化了对规律内涵的理解。最后,再出示“小明去学校”的主题图,让学生说“为什么选择中间那条路?”让学生深刻的的感受到“生活中处处有数学”,从而学会用数学的眼光观察和分析周围的世界。练习设计力求多层次,让学生的思维在巧妙的设疑中引向深入,做到学以致用。
本节课通过让学生动手实践,认真思考、合作交流、共同分享,引领学生经历了一次“研究与发现”的完整过程,调动学生的多种感官参与学习活动体现了自主、合作、探究的教学方式,体现了以生为本的教学理念,既注重数学知识教学,更注重数学学习方法和数学思想的渗透,从而养成深入思考的良好学习习惯。
这一节课也有很多遗憾的地方。比如:在汇报不能围成三角形的数据时,有位同学说:“9厘米、10厘米、11厘米能围成三角形时,教者并没有记录,而是强调要不能围成三角形的数据时,这样做打消了这位同学的学习积极性;有的同学回答不够全面时,教者让其他同学进行补充……以上情况出现时,教者没有及时给予启发,引导学生得到正确、完整的答案,让学生能“体面的坐下”,这说明教者在教学过程中没有灵活的教学机智,以后要多多关注学生的情感,对学生进行积极性评价。
一节课结束了,但留给我们教者的思考却很多:如何真正体现以生为本的教学思想?如何为学生后续学习和工作打好基础,铺平道路?如何打造高效课堂?在我今后的教学中这些都是值得深思的课题。
《三角形三边的`关系》是四年级下册内容,是在学生已经初步认识三角形的基础上,使学生进一步深化理解三角形的组成特征,即三角形任意两边的和大于第三边,加深对三角形的认识。在探索三角形边的关系过程中,让学生体验通过对实验数据收集、整理、分析,从中发现和归纳结论的方法。学生都知道三角形是由三条线段围成,但是对于“任意的三条线段不一定都能围成三角形”这一知识却似懂非懂。另外,“三角形任意两边的和大于第三边”的结论,对于学生来说理解并不是非常困难,此内容的教学价值更多的在于过程和方法。因此,在教学中应尽量地为学生提供探索的空间,引导学生围绕问题主动地进行观察、实验、猜测、验证、推理等数学探究活动,让学生自主地“做”和“悟”,从而得出结论。再次,学生的操作材料(吸管和小棒)都有一定的粗细,在实践操作时难免产生误差,此时,可恰当地运用多媒体动态演示,能有效地突破教学难点。
本节课的教学,我认为重点在于探究的过程与方法。通过动手用三根吸管围三角形(有的能围成,有的围不成),引导学生进行观察、实验、猜测、验证等数学探究活动,初步感悟到:“当任意两边的和大于第三边时,能围成三角形”的规律。本节课,我设计了一连串的问题:“为什么这三根吸管围不成三角形?”、“怎样的三根吸管能围成三角形?”、“第三根小棒的长度应在哪个取值范围内?”引导学生发表自己的观点,并对他人的观点发表自己的意见,进行质疑。这样,学生能通过一个个问题的解决深化对知识的理解,完善结论,使学生的思维得到提升,认知产生飞跃。最后通过发挥多媒体教学的优势,最大限度地提高教学效果。
三角形边的关系比较抽象,而且在动手操作时,很容易产生误差。课件应用,能动态呈现出来,为突破本节课的难点起到了至关重要的作用。例如:在验证“当较短的两根小棒长度之和等于第三根”能否围成三角形的猜想时,学生意见不一,因为小棒是圆形的有一定的粗细,所以在围三角形时很容易产生误差,误导学生。利用课件引导学生明白当较短的两根小棒的端点搭在一起时,就与第三条线段完全重合了,围不成三角形,直观形象地突破了难点。
本节课的内容是在学生学习了角,初步认识了三角形,为进一步研究三角形三边之间的关系做好知识准备。学好这部分内容不仅可以帮助学生从形的方面加深对周围事物的理解,还可以运用规律解决问题。
成功之处:
提供动手操作的机会,让学生感悟三角形三边关系的特征。对于三角形三边关系的特征,在教师引导下,学生利用已有的生活经验,给学生提供充足的从事数学活动的机会。在教学中首先让学生用四组小棒:
(1)6、7、8厘米
(2)4、5、9厘米
(3)3、6、10厘米
(4)8、11、11厘米
分别摆三角形,并填写记录单,让学生发现哪组能摆成三角形,摆成三角形的三边之间有什么关系,在操作中探究、感悟、发现三角形三边之间关系的特征。学生在发现三角形任意两边之和大于第三边的规律之后再让学生观察思考:判断时是否需要把三根小棒中的每两根都相加,有没有简便、快捷的方法呢?从而让学生知道较小两条线段之和大于第三条线段,就可以构成三角形。
不足之处:
学生在判断三角形三边的关系时对于“任意”两字的理解不到位,没有把问题思考全面,只看到有两边之和大于第三边就进行判断导致出错。