今天,我上了一节《一个数除以小数》。从基本理念、教学构思、操作过程等方面去审视《一个数除以小数》的备课、教学教过程,发现了不少值得深思、改进的问题。
思想解放的程度不够,从备课到讲课,因为受传统教学思想的影响,生怕重难点不突出,生怕学生不能较为熟练地掌握“一个数除以小数”的计算方法和技巧,生怕完成不了教学任务,追求40分钟以内的所谓知识的完整性太多的顾虑,导致产生前怕虎,后怕狼的心理,缩手缩脚,该放手做的事情不敢理直气壮地去做,走不出传统教学模式的影子,影响着新课标、新理念的实施,特别是以下几个方面存在的问题尤其突出。
一、一个数除以小数计算方法的依据是商不变规律,又牵涉到小数点移动规律,又想从除数是整数的小数除法引入,导至复习时面面俱到,时间用得太多。有点本末倒置了。
二、 在教学“除数是小数的除法法则”时,存在操之过急,包办太多的现象。
本来,通过例5的学习,学生已经理解除数是小数的除法计算方法的算理是“商不变性质”和“小数点位置移动引起小数大小变化”的规律,把除数是小数的除法转化成除数是整数的除法后,就能用“除数是整数的小数除法”的计算方法进行计算。利用迁移,明确转化原理,完全可以由学生通过小组讨论总结出“除数是小数的计算法则”不必要把这个过程总让教师“扶着走”。
本节课的学习自认为有一下几点做得比较好:
第一,学习时我重视知识间的联系,引导学生将新知识转化成旧知识(将一个数除以小数转化成小数除以整数)进行学习,注重“转化”的数学思想方法。
第二,课堂上注意给学生充分独立思考的时间和机会。比如,列出算式7.6÷0.85后,问学生“这个算式和我们以前学的除法算式有什么不一样?你会算吗?自己先试试。”
尊重学生原有的知识结构,让学生有一个独立思考的时间,通过思考出现认知冲突,从而激起学生的学习兴趣。
当然也有许多不足之处,首先,我对一些细节处理得不够明确,比如:给0.544÷0.16列竖式时,当除数和被除数扩大到它的100倍时,原来的0和小数点没用了就应该划去,课堂上的板书这一点做到了但没有强调,结果一部分学生在练习时没有划掉0.
本节课内容是小数除法的重点,关键在于要把除数是小数的除法转化成前面学过的除数是整数的除法。新课标指出,“数学教学活动必须建立在学生的认知发展水平和已有知识经验基础之上。
一、验证猜测,明确探究目标
引人新课的小猴分桃故事有两个目的:一是回忆商不变规律,二是以旧引新,由整数除法得出的性质将其推广到小数除法。之所以是“猜测”,是因为我并没有让学生说明理由,学生不假思索地立即举手回答,也说明他们是凭直觉判断。
二、巧设“阶梯”,树立探究信心
指导学生掌握知识的同时,要指导学生把自己学习的过程作为认知的对象,理解、总结自己学习的全过程,掌握学习方法和解题策略。指导学生自主探索学习的过程,就是放手让学生自主去尝试、探究、归纳、总结,掌握发现问题,找出问题的途径和方法。为此,教师适时指导,采取多种形式,设计适当的坡度,架设必要的桥梁,及时有效地帮助学生明确方向,越过障碍,树立探索信心,形成探究学习的能力。
通过学生分组讨论,互相交流,找出规律:根据商不变规律,学生各抒己见,讨论热烈,我适时点拨:我们转化的关键是要把什么数转化成整数?除数是一位小数时,把除数和被除数扩大多少倍?小数点怎样移动。通过观察分析,学生进一步明确:转化的目的,是把除数是小数的小数除法转化成除数是整数的小数除法。我继续提问除数和被除数的小数位数有的相同,有的不同,转化时被除数会出现几种情况?这时学生的认识已形成了能力,很快总结出了三种情况。
针对学生理解知识的特点,依据学生的认知规律,精心设计探究过程,层层递进,步步深入。当学生在探究学习活动中遇到困难时,适时加以点拨,指导学生进行探索与思考,这样,不仅使学习活动顺利进行,而且使学生充分体验到解决问题后的成功喜悦,增进学生对数学的自主探索和应用数学的信心。 总之,有针对性地激活学生已有知识,并启发学生根据需要适当加以重组知识结构,可以有效地促进思维的发展,不同思维方式的沟通,有利于原有知识和新知识的融合,抓住要点明确地揭示新旧法则的异同,并使学生通过亲自实践切实体验到这些异同,可以有效地促进新旧法则的精确分化,有利于认知结构的调整与重建。我们在数学教学中,一定要注意挖掘学生合作探究的'潜能,最大限度地提高课堂效率。
《一个数除以小数》是人教版五年级上册第三单元的一节内容,是在一个数除以整数基础上的延伸。所以在教学中最关键的就是用转化思想把它转化成一个数除以整数来计算。
本学期第三代导学案的使用一直在摸索改进中。前段时间导读单在课前批改,更正,上课时再交流,总觉有点重复,而且一交流一节课的教学内容又完不成,本节课我进行了改进,上课不再交流,直接展示导读单中例题的核心内容,提问重点知识,然后进行分层训练,学生演板,向大家讲解计算过程,下面的同学可以对讲解提出质疑。讲解的重点放在分层训练的第一题,教师的角色知识只是引导学生把没有讲明白的地方再讲明白,真正讲不明白的让其他学生补充,如果没有人补充,就在抽查下面的同学,看是否真正学明白。就这样一节课下来,不到40分钟就进行完了这堂课。评课时回想起来,这节课确实做到了吧课堂还给学生,让学生做,让学生说,从中发现问题,解决问题的能力。虽然学生有时说的不完整,甚至表达不太清楚,但是只要学生敢说,学生总会有进步的。
这节课虽然学生说了,但总觉说的还不够,下面的学生交流还太少,特别是分层训练第一个题,虽然提问了几个学生,但没有让同桌交流是一大缺憾。我们的教学面对的是全体,所以小组交流、同桌交流切不可少。
一个数除以小数是在学生学习过除数是整数的除法后进行的。除数是整数的小数除法学生较容易掌握。但除数是小数的除法却是个难点。而商不变性质正是联系旧知与新知的桥梁,也是新知的最佳生长点。在教学中,复习旧知后,我要求学生根据214.5÷15=14.3,利用商不变的规律直接写出21.45÷1.5、2.145÷0.15、0.2145÷0.015的商。这是学习层面的一个飞跃,但却是有根据、有基础的飞跃。学生能根据商不变性质来说理,就证明了这个飞跃是学生能够接受的。只要紧紧抓住商不变性质这根线索,这部分内容就能轻松获得突破。
在教学除法竖式时,必须规范。在明确算理的基础上,即运用商不变的方法把小数除法转化成整数除法后,怎么书写才能使计算准确率更高一点?事先我也进行了考虑。让学生明白,小数除以小数的关键在于转化,即把除数转化为整数。如何转化,要利用商不变的性质。先把除数的小数点画去,为使学生看得更清楚,我要求学生在原有的小数点上打上小叉,再把被除数的原有的小数点打上小叉,向右移动,移动的位数取决于除数的小数位数。除数有几位小数,被除数的小数点就向右移动几位。然后按照整数除法的方法进行计算。最后通过一些课后练习及生活中的数学,让学生巩固方法。
在计算的过程中,除数和被除数小数点位置的确定是一个难点,部分学生容易出现错误,适时引用儿歌可以帮助学生较好的突破这个难点。“外移几,里移几;方向一致要注意;里缺补零要牢记;上下点点要对齐。”
在作业反馈中,我发现学生计算错误较多。主要表现在以下几个方面:
一、不能顺利的移动小数点。通过移动小数点把除数变成整数,所有的学生都知道,也都能顺利完成,关键是后进生总是忘了同样移动被除数的小数点。或者移动得次数与除数不一致。虽然他们知道除数与被除数的小数点移动是根据商不变的性质来的,但是他们在做作业的时候,就忘记了。
二、在完成竖式的过程中,个别同学书写不认真,数位对不齐。这也是部分学生错误的原因之一。
三、商的小数点与被除数原来的小数点对齐。
四、除到哪位商那位,不够时忘记在商的位置上写0,再拉下一个数。还有部分学生用余数再除一次。
现在反思其中的问题,觉得教学中在商的小数点的处理上没有具体的细化分析和引导,学生的理解也没有真正到位。这样,看似“简单”的问题却出现了纷繁的错误也就再所难免了。因此,只有站在学生学习的角度去思考设计教学,不能以为一些问题能很简单的生成。教学从学生的新知生长点上去展开重点引导,在学生的迷茫处给与及时地指点,这样或许效果会好许多。