《加法交换律》是人教版四年级下册第三单元第一节概念课,是在学生已经掌握四则运算的基础上进行教学。在实际的教学过程中,也存在很多的缺点和不足,如下:
1、在引导学生思考举怎样的例子来验证猜想这一环节,处理的不够恰当。不是学生不会思考,是教师的设问指向性不够明确。比如,可更改为“我们是不是可以再举一些加法算式的例子来验证呢?”,让学生明白举例是指举加法算式,然后交换他们的位置,看和是否相等。
2、在让学生体验“无穷”思想时,没有达到预设的教学目的。课堂教学时,当学生举了大量的例子之后,教师询问是否可以验证我们的猜想时,有的学生还是坚持认为不可以,一定要举无数个例子才行。此时,可自然衔接,引入用字母a和b可表示任意数。这样,我想比教师生硬地解释,刻意地让学生用自己喜欢的方式来表示加法交换律,效果要好得多。
3、在引出加法交换律时,要明确强调这一规律中,变的是加数的位置,不变的是他们的和。让学生反复地说,a和b可以代表哪些数?
4、在课堂练习时,可引导学生回顾我们在哪里用到过加法交换律。可利用课本31页第2题,将新学与旧知巧妙地结合。另外,要将每一个习题的设计意图,充分地挖掘出来。
总的来说,这堂课取得了预期的教学效果。学生不但掌握了加法交换律,更重要的是学会了数学方法,为下节加法结合律以及乘法运算规律打下很好的基础。
在教学加法交换律时我采用了情境导入—探究新知—反馈练习三个教学环节,情境导入环节利用课本上李叔叔骑车旅行的情景导入,得出已知条件和问题;探究新知环节,让学生先独立完成,集体交流时发现算式结果相同,用等号连接,得出56+28=28+56,然后又让学生仿照举例,最后引导学生得出规律;反馈练习环节学生的积极性很高,本节课的教学非常顺利,轻松完成教学任务。但我觉得本节课的知识太少,能不能把加法交换律和乘法交换律合并成一节课讲解呢,在以后教学本节课时我准备在“交换律”这节课进行以下几个方面尝试。
(1)改进材料的呈现方式。教材只是提供了教学的基本内容、基本思路,教师应在尊重教材的基础上,根据学生的实际对教材内容进行有目的的选择、补充和调整。另外在材料呈现的顺序上,改变了教材编排的顺序:先教学加法交换律和加法结合律,然后教学乘法交换律交换律和结合律,而是同时呈现,同时研究。因为当学生在已有认知结构中提取与新知相关的有效信息时,不可能像教材编排的有先后顺序之分,而是同时反映,充分做到了尊重学生的认知规律。
(2)找到生活的原型。加法交换律和乘法交换律的实质是交换位置,结果不变,这种数学思想在生活中到处存在。本节课我首先引导学生用辨证的眼光观察身边的现象,渗透变与不变的辩证唯物主义的观点;然后采撷生活数学的实例:同桌两位同学交换位置,结果不变。引导学生产生疑问:这种交换位置结果不变的现象在我们的数学知识中有没有呢?你能举出一个或几个例子来说明吗?这样利用捕捉到的“生活现象”引入新知,使学生对数学有一种亲近感,感到数学与生活同在,并不神秘,同时也激起了学生大胆探索的兴趣。
(3)找准教学的起点。对学生学习起点的正确估计是设计适合每个学生自立学习的教学过程的基本点,它直接影响新知识的学习程度。加法交换律和乘法交换律是人教版小学数学第八册第三单元的内容,先教学加法交换律和结合律,然后是交换律和结合律的应用,接着乘法交换律和乘法结合律,乘法分配律。而在过去的学习中,学生对加法和乘法交换律已有大量的感性认识,并能运用交换加数(因数)的位置来验算加法(乘法),所以这节课的重点应放在引导学生发现并用数学语言表述数学规律和总结怎样获得规律的方法上,使学生的认识由感性上升到理性。
本节课为《运算律》的第一课时,而在这一单元之前,学生经过了三年多时间的四则运算学习,并对这些已经有一些感性认识的基础:如在10以内的加法中,学生看着一个图可以列出两道加法算式;在万以内的加法中,通过验算方法的教学,学生已经知道调换加数的位置再加一遍,加得的结果不变。本节课通过一些实例进一步来引导学生进行概括总结。
在教学中,我首先创设了学生熟悉的生活情境,让学生根据社会实践中的信息自由地提问。这样既培养了学生的发散性思维,以及问题意识,也符合新课程“创造性地使用教材”的理念。在教学中通过对两个算式的观察比较,唤醒学生已有的知识经验,使学生感知加法交换律,组织学生写出类似的等式,帮助学生积累感性材料,丰富学生的表象,同时鼓励学生用自己最喜欢的方法总结出加法交换律和加法结合律,学生能较快的体会出这两种运算律,使学生体会到符号的简洁性和概括性,发展学生的符号感。通过几个层次的练习,使全体同学都参与到有趣的数学学习中,体会到生活处处有数学,充分感受到学习数学的乐趣,又巩固了全课的内容,为以后教学应用运算律进行简便计算作好铺垫。
通本节课的教学,我发现还有很多不足之处。
一、对学生的课堂表现评价不够及时。
如在教学加法交换律时,学生写出“6+2=2+6,1+9=9+1…”时,没有很好的解读学生的心理。这位学生之所以写出一位数的算式,是因为他觉得写一位数加一位数的等式非常简单,方便计算。但是作为不完全归纳法,他写出的算式有一定的局限性,没有代表性。此时如果追问学生,“是不是只有一位数加一位数才有这样的规律?” ,“那你对这位同学写得有什么建议呢?”这样可以引导学生进一步思考,培养他们思维的严谨性。
二、没有很好的辨析加法交换律和加法运算律本质特性。
这样导致了学生在后面的练习中不能进行准确的辨析。可以增加加法交换律和加法交换律的对比环节,对比得出加法交换律的本质特征:加数没有变,结果没有变,运算符号也没有变,但是加数的位置发生了变化。
总的来说,这堂课取得了较好的效果,不过同时,也发现了很多问题,这些问题有些是客观的,很多是由于本人的教学机智和教学设计还不够。
得:(1)通过模仿举例,渗透等量代换的数学方法。
学生根据模仿,学会了根据结果相等,将两个算式写成恒等的方法,这对于他们来说是一个新知识,其实也就是在经历等量代换的过程。而这一数学方法对接下来要学习其它各种运算定律,及运用定律进行简便运算,列方程解应用题等都十分重要。
(2) 通过对大量数学事实的对比,发现其中的规律,学习不完全归纳发。
学生在独立举例后,在全班范围内交流发现的规律,得出结论:不管两个加数的位置怎么交换,它们的和都不会改变。师引导:同学们所举的所有例子都能写出这样的结论,可见我们的四则运算中有一个规律,谁能把这个规律准确地概括一下?……从个别到一般,把对特例的发现上升为具有普遍意义的规律和性质,这就是小学阶段的“不完全归纳法”,让学生经历这一归纳过程,体验结论的科学性。
失:本节课的不足之处就是对处理“用字母表示定律”这一环节有些不足。在学生例举字母表示定律后总结出用a+b=b+a公式来表示定律后,没有进一步拓展,如问:三个数可以怎样表示呢?这个规律还适用吗?这样环节设计,会让学生对字母表示运算定律更为熟悉,从而培养数学思想,更能强化目标。
在今后的数学中,注意强化本节课的重难点,并针对重难点进行数学思想的渗透与拓展,尤其对稍差的学生更应该重复强化,尽量让每一个孩子都学会。
《加法交换律》是义务教育教科书(人教版)数学四年级下册P17:例1的内容。运算定律是本册书中的重点,也为以后的简便运算打下基础。
本节教学我利用学生的举例、观察、发现、归纳,总结出加法交换律,环节设计合理,也激发了学生的学习积极性。
在情境导入环节,我利用播放成语故事《朝三暮四》引起学生对新知识的求知欲。让学生从故事中找信息,自己提出问题,然后学生解决问题。从故事中得到3+4=7(个)和4+3=7(个)这两个算式。接着我说:“对,两种吃法不同,结果猴子每天吃到的栗子的总数量是同样多的。”这就是今天要研究的内容,加法交换律。
在探究规律环节,我利用李叔叔骑车旅行的情景图。让学生从情景图中找信息,自己提出问题,然后学生解决问题。 根据学生回答板书:40+56=96(千米)或 56+40=96(千米)然后让学生说出这两个算式的相同点和不同点。学生回答,相同点是每组算式中有两个加数,而且两个加数相同,左右两边的加数的和相等。不同点是两个加数交换了位置。然后问:“这两个算式的和相等,这两个算式之间有什么关系?可以用什么符号连接?”学生从中回答,每组算式中有两个加数,而且两个加数相同,只是交换了位置,而得到40+56=56+40这个等式。我接着问:“你能照样子再举几个例子吗?”调动了学生的积极性。学生从这些例子可以得出什么规律?请用最简洁的话概括出来,学生回答:两个数相加,交换加数的位置,和不变,这叫做加法交换律。如果用字母a、b表示两个加数,则可以写成:a+b=b+a我问:“你能用自己喜欢的方式来表示加法交换律吗”然后学生回答特别多,像甲数+乙数=乙数+甲数,▲+=+▲等等特别多。虽然有的式子不够完美,但充分说明学生已经掌握了加法交换律。
在巩固练习环节,我设计了多种多样的练习题,先是基础练习,还有拔高练习,层层深入,学生学得也兴趣盎然。
总结本节课,整节课环节紧凑,利用多媒体课件也节省了大量时间,有充分的时间练习。由于本节课内容不多,也很简单,学生的注意力也很集中,学生发言积极,所以也很好的完成了教学任务,学生也完成了学习任务。
但是本节课也有很多不足之处:1、在巩固环节,我出示了三道加法算式,但是有的学生利用减法验算,这样是不符合要求的。这时我应该让学生说出为什么不行,不应该老师解释,2、最后填表,由于时间关系我没给学生足够的时间,问题解决的不太理想。
前段时间听了四年级的一节研讨课——“加法交换律”。课中,教师让学生“用自己喜欢的方式表示加法交换律”,很简单的要求,学生十拿九稳的不会出错,但是学生表现出乎我意料之外:
学生1:√+×=⊿,×+√=⊿,√+×=×+√;
学生2:a+b=w=b+a=w
……
回顾课堂,执教者老师笑容甜美,语言亲切,精心设计了这节研讨课:
教师从学生熟悉的生活情境“李叔叔一天共骑了多少千米?”引入新课,学生列式后分析得出:40+56=56+40,在此基础上教师又利用天平的直观演示,引导学生得到两个等式:50+10=10+50、100+20=20+100,学生观察三个等式交流总结初步体验“加法交换律”。接着教师让学生自主举例子,学生积极踊跃:1+3=3+1,789+121=121+789……,教师再次让学生观察黑板上的7个算式,结合算式让学生进一步的理解“加法交换律”,并比较辨析加法交换律中的“变”和“不变”,最后教师才水到渠成的在黑板上板书课题“加法交换律”。
对于“加法交换律”的得出教师真是花了心思,下足了功夫。可是从学生“用自己喜欢的方式表示加法交换律”这个环节的表现看得出,学生对“加法交换律”的理解没有到位。问题在哪里呢?我认为,加法交换律的内容比较简单,学生在一、二年级已经有了大量的感性认识,只是到四年级才开始总结提升“把零散的感性认识上升为理性认识”。用语言表述加法交换律,以及用字母表示加法交换律,对学生来说也不是很困难的。因此这节课,对于“加法交换律”的得出,可以更简洁,只用一个情境就可以,天平的效果不是很好,天平小,很多同学没有看见,因此天平的环节可以取消;黑板的板书也可以更简洁,只板书等式;要让学生体会符号表示“加法交换律”的简明以及让学生体验运用“加法交换律”可以使有些计算简便。
【思考】我们在平时的教学中是不是把探究新知的过程搞复杂了?探究新知的时候,为了追求“完美”,为了讲得“透彻”,我们会步步为营,取各家“精华”放在一起,舍不得“丢弃”,于是,很简单的知识点的探究,在我们的设计下,就……。有位哲人说:“简约到极致,就是美丽。”正所谓:“大道至简”,其实,教学也是如此,“简约”更美,简约的数学课堂必然是美丽的课堂,这种美丽同样有着多层的解读:它是教师个性化教学思想光辉的`折射;它是数学学科本身逻辑、严谨、充满理性精神的魅力凸现;它是“简约而不简单”这样一句流行语的生动注解;它是学生在教师引导下用“四两拨千斤”方式自主学习的完美演绎……设计简洁的教学环节,采用简便的教学方法,也能有效,也能让学生喜欢而轻松愉快、积极主动地欣然接纳!
本节课的知识点相对来说比较简单,因此从课堂效果来看学生掌握的还是比较好的。本节课设计了一个让学生自己用喜欢的方式表示加法交换律,两个班的学生在本节课中都能充分的表达自己的意愿,想到了好多不同的方法来表示交换律,这期间当然也有我想要的字母表达式。教学任务全部完成,同时也体现了小组合作和动手操作,这也是本节课我在教学的过程中希望能够完成的教学目标。
本节课的可取之处仍然是我们继续使用了小组合作的方法,让学生在讨论中得出想要的结果,而且还能得到充分的锻炼,锻炼孩子们能用完整的话表达自己的想法,锻炼他们用标准的数学语言来描述规律等等。本节课中最大的亮点就是这项工作了。
然而,教学总是有缺憾的,今天的课安排的不是很充实,课程上完了还有将近五分钟的时间,我的设计意图也是这样,想利用这五分钟的时间跟学生一起做一下今天的作业,一方面他们回家以后作业就没有那么多了,另一方面作业中的一些稍难一点的题我也能够做一下指导。但是从另一个侧面又能说明本节课设计的还是不够充实,没有拓展方面的题让学生在课上训练,尤其是对于五班的同学来说,这节课几乎是吃个半饱,如果本节课能针对五班学生的特点再加入一些提高性训练的话,这节课应该会上的更完美,换句话说,本节课中分层教学又体现的不是很充分了。
总之,如果再次教学本课的时候,应该针对本节课知识点简单的特点有针对性的加入一些拓展的题让学生充分掌握和巩固的 ,这不仅是要体现分层教学,更重要的是让那一部分“没吃饱”的同学得到满足!教学就是教师在打仗,每一场下来都要总结自己的经验为下一场战役做准备,希望能达到百战百胜的目的!
今天完成了加法交换律的教学,由于借班上课,上完后感觉自己前半节课发挥得不如后半节课,不过学生对交换律的理解和应用以及对交换律对减法、和加减混合的应用掌握的还是不错的。这节课,我从学生以学知识入手,引导学生发现加法交换律,理解知识就在我们身边,进而提出除了帮助我们验算外还有什么强大的功能!接下来利用加法交换律使计算简便,进而发现还可以使减法简便,加减混合简便!使交换律得以推广!
听完课后,赵老师没来得及喝水就结合这节课进行了评析。
赵老师首先肯定了我的素质,作为骨干教师课堂扎实,教学思路清晰!
同时赵老师提出这节课可以从经验拓展的角度,让学生从更多的生活实例入手,从道理上理解“交换”,如8+74+2、想:原来有8本作业,先拿来74本又拿来2本,我们可以这样,先拿来2本,又拿来74本,都表示现在有的,因此8+74+2和8+2+74是相等的。再如:35-17+5,可以这样想公交车原来有35人,下去17人,上来了5人,可以这样想有35人,上来了5人,又下去了17人。这样的结果都表示现在有的因此人数是一样的。结果是相等的。
“理”上的理解更容易让学生从根上明白算理。我在教学时,用计算的方法验证下的工夫多了一些,学生举例少了点,这样总感觉形式上稍多了点,另外“验证”更多的是验证这种方法可以,但不能在道理上理解,赵老师提出可以看看马刚老师的课例。也鼓励我们多去看看名师的课例。
从第一次听课得到王宏主任的指导,指出“苹果”的贯穿,课堂练习的量,今天得到赵老师的指导,自己感觉收获很多,发现了自己身上的不足,从备课到上课,用了两天的时间,昨晚还熬夜制作课件到11点多,虽然累,但自己有了收获,此时感觉一切累都值得!
整个教学过程同学从已有的知识经验的实际状态动身,通过质疑、猜测、例证、观察、交流、归纳,亲历了探究加法交换律和乘法交换律这个数学问题的过程,从中体验了胜利解决数学问题的喜悦或失败的情感。
1.注重教学目标的整合化。
根据时代的发展和要求,数学教学的价值目标取向不只仅局限于让同学获得基本的数学知识和技能,更重要的是在数学教学活动中,了解数学的价值,增强数学的应用意识,获得数学的基本
2.注重教学内容的实际性。
新课标里曾指出,教学时应从同学熟悉的情境和已有的知识动身进行,开展教学活动。这为我们的教学改革在操作层面上指出了方向。“交换律”这节课在以下几个方面进行了尝试。
(1)找准教学的起点。对同学学习起点的正确估计是设计适合每个同学自立学习的教学过程的基本点,它直接影响新知识的学习程度。加法交换律和乘法交换律在浙教版小学数学教材中分别布置在第七册和第八册,而在过去的学习中,同学对加法和乘法交换律已有大量的感性认识,并能运用交换加数(因数)的位置来验算加法(乘法),所以这节课教师把重点放在引导同学发现并用数学语言表述数学规律和
(2)找到生活的原型。加法交换律和乘法交换律的实质是交换位置,结果不变,这种数学
(3)改进资料的出现方式。教材只是
在学校举行的一人一节研究课展示活动中,我执教的苏教版四上《加法交换律和结合律》这一课题,通过活动我收获颇多,现将我的反思呈现如下:
教学的整体程序是:出示这堂课的学习目标——出示这堂课的自学要求——学生根据自学要求自学、教师巡视发现学生自学中的问题——小组汇报自学结果(优先差生)——纠正、讨论、指导自学结果——小组派代表在班级展示自学成果----师生点评------巩固练习-----知识延伸(拓展)。这样的设计,生生之间积极互动,师生之间互动,教师引导学生自己去发现规律,并学会用多种方法表示,让学生有一种成就感。然后引导学生运用前面的研究方法开展研究,由扶到放,初步培养学生探索和解决问题的能力和语言的组织能力。这节课我强调学生的发言要大声地说:我们小组的发现是……充分调动他们的自信心和自豪感。
具体做法是:
一、学生经历有效地探索过程。在探索知识形成的过程中,以学生为主体,激励学生动眼、动手、动口、动脑积极探究问题,促使学生积极主动地参与“观察发现——举例验证——得出结论”这一数学学习全过程。教学这两个运算律都是从学生解决熟悉的实际问题引入的,让学生通过观察、比较和分析,初步感受运算的规律。然后让学生根据对运算律的初步感知,举出更多的例子,进一步观察比较,发现规律。我有意识地让学生运用已有经验,经历运算律的发现过程,让学生在合作与交流中对运算律认识由感性逐步发展到理性,合理地构建知识。
二、注意数学学习方法的渗透。加法结合律是本课教学难点,由于在探索加法交换律时,学生经历了“观察发现——举例验证——得出结论”的学习过程,在此基础上,再让学生探索加法结合律,教师加以适当的引导,为学生提供足够的自主探索的时间和空间,学生将已有学习方法渗透到探索加法结合律中,很容易感受到三个数相加蕴含的运算规律。学生不但理解了加法运算律的过程,同时也在学习活动过程中获得成功的体验,增强学生学习数学的信心。
三、教学中注意沟通知识间的联系。在教学完加法交换律时,我及时把新学的知识和加法计算的验算结合起来,让学生回忆交换加数验算的方法,明确与加法交换律之间的联系。在教学完加法结合律时,又出示了两道口算题9+7、34+27,让学生回忆口算过程。这样引导学生把新旧知识及时沟通,加深了对已有知识经验的认识,同时加深了对新知的理解。在最后的提高巩固阶段,结合练习为下节课学习加法简便计算垫下了基础。
总的来说,这堂课取得了较好的效果。通过本课的学习,学生不但掌握了加法交换律,加法结合律的知识,更重要的是学会了数学方法,所以到课尾出现了学生由加法运算律联想到减法、乘法、除法运算中,是否也存在一定的规律呢这一想法。并产生运用这一数学方法进行探索的愿望和热情。这些数学方法是学生终身学习必备的能力。同时,在教学过程中,我也发现了一些问题,这些问题有些是客观的,有些是由于本人的教学机智和教学设计还不够。总之,在学习洋思经验及实施新课改中,我会不断地反思,及时地总结,适时地改进,充分地完善自我,相互学习,取长补短,不断提高自己的教育教学水平。