在教学“分数乘整数计算法则”时,我从一道计算题入手,让学生联系生活实际,创设问题情境,较好地体现了学生学习的主体性,沟通了数学与生活实际的联系,使学生认识到“数学”是生活中的数学,是有用的数学。同时这道计算题还沟通了与新的知识的联系,引出了分数乘整数的意义,并能让学生凭借这个知识点,探索出分数乘整数的计算法则。在教学分数乘整数的计算法则时,我还注重了放手让学生去探索,注重了学生的合作交流,通过讨论发现知识的奥秘,通过交流拓宽全体学生的知识面。由此我深深地体会到,教师不能要求学生按照我们成人的或者教材编写者的意图去思考和解决问题,那些单一的、刻板的要求只会阻碍学生的思维发展。我们教师在课堂上只是学生的引路人,是导师
这则数学教学反思之《分数乘整数计算法则》希望能给你的学习生活增添益处。
分数乘整数的知识基础在于同分母分数加法的计算方法及分数的意义及整数乘法的意义等知识。在课堂的开始环节,我对这些内容进行了一定的复习,再进入分数乘整数的教学。
分数乘整数的算法很简单,在相乘时,分母不变,只把整数和分数的分子相乘作分子。在教学这个内容时,我关注到新教材在算理方面的重视,注意到图形和算式之间的联系,在计算前充分让学生感知涂图形的过程。因此,在后面计算方法的得出就水到渠成,比较容易了。
三堂课上下来,学生对算理的理解比较清晰。目前还存在的问题就是约分的环节,有些学生喜欢算出结果以后再约分,对计算过程约分还不愿意采用。可能对于这种在计算过程当中的约分,还是一知半解,对这样约分的道理理解得不够清楚。我在介绍这种办法的时候还特意把要约分的分数改写成分母和分子分别由几个数相乘的形式,帮助学生理解。可能这样做,还做得不够吧?再由于上学期的约分知识很多学生就不熟练,有不少学生仍不断出现约分错误和忘记约分的情况。
不知改进这些问题的办法有哪些?是不是只能是让学生多做一些练习题,通过不断强化的办法,让他们掌握计算时各个环节应注意的问题?
教学片断:
师:哪些同学知道3/103的计算结果?
(绝大多数学生举起了手,部分同学迫不及待地说出了答案:9/10。)
师:说一说你是怎么计算的?
生1:我从书上看到,分数与整数相乘时,只要把分子与整数相乘就可以了,分母不变。所以,33=9,分子是9,分母仍然是10,结果就是9/10。
(举手的学生都点头表示同意生1的发言,有个别学生表示是从课外数学班的学习中了解到的。)
师:老师也同意用这个方法进行分数与整数相乘的计算。对于这个内容,大家还有什么疑问?
生2:为什么只把分子与整数相乘,分母10不和3相乘?
师:多好的问题!(这个问题正是理解算理的关键。)大家有什么想法?可以在小组内交流。
(几分钟以后,许多同学举起了手。)
生3:我是这么想的:3/10表示3个1/10相加,同分母分数加减法的计算法则是,分母不变,只把分子相加减。所以分母不变,只计算分子3+3+3,也就是33就可以了。
师:你能抓住分数乘整数的意义,从而将分数乘整数与分数加法的计算方法联系起来思考,真好!
生4:3/10里面有3个1/10,3/10的3倍就是有9个1/10,也就是9/10。
师:你对分数的计算单位以及分数单位的个数理解得很透彻!
生5:如果将3/10的分子和分母都乘3,根据分数的基本性质,结果还是3/10,而不是3个3/10。
师:生5从反面给我们讲明了分母不能与整数相乘的道理,谢谢你。
生6:我认为3/10等于0.3,0.33等于0.9,也就是9/10。所以,3/103等于9/10。
生7:我想给大家举个例子说明3/103等于9。老师拿来10支粉笔,每天用去3/10,也就是3支,三天用去9支,也就是用去这些粉笔的9/10。
师:用日常生活中的实例来理解数学,也是一种非常好的学习方法。
我从复习同分母分数加法引入,得出整数乘法的意义和分数乘整数的意义相同都是求几个相同加数和的简便运算,由此进入分数乘整数方法的计算教学。在教学中,我充分利用学生已有的知识经验,努力结合现实的问题情境,将计算学习与解决问题有机结合,放手让学生自主探究分数乘法的意义。创设学生喜欢的实际情境,让学生根据实际问题的数量关系,列出算式。学生很容易结合整数乘法的意义,列出乘法算式。这样处理,既有利于学生主动地把整数乘法的意义推广到分数中来,即分数和整数相乘的意义与整数乘法的意义相同,都是求几个相同加数和的简便运算。存在的问题就是约分的环节,有些学生喜欢算出结果以后再约分,对计算过程约分还不愿意采用。可能对于这种在计算过程当中的约分,还是一知半解,对这样约分的道理理解得不够清楚。我在介绍这种办法的时候还特意把要约分的分数改写成分母和分子分别由几个数相乘的形式,帮助学生理解。
《分数与整数相乘》是青岛版六年级上册分数乘法单元的开启课,是在学生掌握整数数乘法、理解分数的意义和基本性质,以及同分母分数加法的基础上进行教学的,这是学生首次接触分数乘法。分数与整数相乘在运算意义上与整数乘法一致,因而算法是教学的重点。
《课程标准》强调从学生的熟悉的生活经验和学习经验,让数学学习成为学生“生动活泼、主动发展和富有个性的过程”,我在这节课教学中努力的引导学生实现以下几点设想:
1、结合现实的问题情境,引导学生理解分数乘法的意义。计算课是比较单调和枯燥的,为了避免单纯的机械计算,我将计算学习与解决问题有机结合。创设了班里同学为教师节做装饰花的实际情境,引导学生根据实际问题的数量关系,列出算式。这里分了两个层次,首先是求三个不同加数的和,只能用加法计算,然后求三个相同加数的和,有了这种对比,学生很容易结合整数乘法的意义,列出乘法算式。这样处理,既有利于学生主动地把整数乘法的意义推广到分数中来,即分数和整数相乘的意义与整数乘法的意义相同,都是求几个相同加数的简便运算,又可以启发学生用加法算出×3的结果。
2、借助同分母分数加法,自主探索分数和整数相乘的计算方法。由于分数和整数相乘可以转化成几个相同加数连加的算式,因此, 放手让学生尝试计算,着重让学生说一说计算的思考过程。教材的例题侧重体现加法和乘法之间的转化,但在教学实践中,我发现有的学生脱离不了加法计算的拐棍,认识停留在用加法计算的层面,对乘的方法没有主动构建的内驱力。我将板书进行了调整,连加和乘写在两个算式,逼迫学生学生借助同分母分数加法的计算方法去思考怎么乘?板书对照清楚明晰,学生很容易发现乘的计算方法,并且脱离了沿用分子相加的不合理算法。
由于用不同加数连加导入,再出现相同加数相加,学生可以不借助示意图,很容易运用已有的整数乘法的经验理解分数与整数相乘就是求几个几分之几相加。示意图的另一个作用是要显示出3个3/10的结果是9/10,由于,我先让学生计算了加法算式,所以示意图的作用就不再必要了。所以,我在教学中没有使用示意图。从实际教学效果来看,这样处理符合学生的认知水平。
3、通过体验和比较,帮助学生体会到先约分再计算可以使计算过程简便。课程标准倡导我们尊重学生学习水平的差异,鼓励算法多样化的同时,也重视方法的优化。
面对新的课程改革,教师首先应该改变教学的行为,即把对新课程的理解转化为自觉的教学行动。这就要求教师在教学行为的层面上,呈现出新课程的`所蕴涵的新的教育理念和新的教学方式。在教学“整数乘法运算定律推广到分数乘法”这一课后,我做了深刻的反思:
一、注重了情境的导入,提高孩子们的参与热情。
本节课,开启课时,我注重从孩子的身边挖掘素材,引出整数乘法运算定律,加以复习巩固,紧接着引导学生回忆这些运算定律曾经运用到什么知识中,引导到小数乘法的简算中,为后面的新知学习打下良好的基础。真正达到了“以旧导新,以旧带新”的效果。
二、鼓励学生大胆的质疑与猜想,激发学生内在的求知动力。
在新授课时,我设计的两个环节,引起了学生强烈的求知欲望。第一,在复习完后,我让学生自己说说,你现在最想研究一个什么样的问题?孩子们表现出空前的热情,比如有的孩子谈到想研究一下整数乘法运算定律是否可以推广到分数乘法?于是我鼓励学生根据已有的知识,去大胆的猜想。孩子们的思维活跃极了,甚至大大超出了我事先的预料;第二,在探究确认上述问题后,我又让学生大胆的质疑,定律推广到分数乘法中会起到什么作用呢?真的能简便吗?孩子的好奇心又一次被激起,他们又乐此不疲的投入到了简算的探究中去。整堂课下来,孩子们始终处在“质疑——猜想——验证”的学习过程中,真正变成了学习的主人。
三、需要改进之处:
①对学生的多样思维应加大评价力度。比如:在开始情境导入这一环节中,学生除了出现4×(2+3) 4×2+4×3两种做法外,还出现了4×2×2+4这样的做法,虽然这种做法与本节课要研究的问题没有多大的联系,但老师却不应忽视孩子多样化的思维方式,应及时给予肯定,并加以合理的评价。再比如:孩子们在猜想整数乘法运算定律是否可以推广到分数乘法时,有一个孩子说到她是想到了整数加法的运算定律可以推广到分数加法,所以断定也能推广到乘法。这里,我给予了肯定,但力度不够。以上可以看出,评价一个孩子,要适时,适当,决不能敷衍,更不能抹杀,否则可能会压制孩子的思维积极性。这一点,在今后的教学中,我还有待加强。
②课前对学生的估计过高,所以使一些事先设计好的练习,没来得及做完。这也提醒我,备课,不仅要备教材,备教案,更重要的还是要备好学生,这是上好一堂课的关键。
总之,通过本节课,使我在教育教学上,在落实新课改的精神上,有了很大的转变和提高,让教为学服务,提高教学质量,关键在课堂。
分数乘整数是“分数乘法”教学的第一课时,是学生理解分数乘法意义的起点。这部分教材是在学生已学的整数乘法的意义和分数加法计算的基础上进行教学的。
在教学中,我充分利用学生已有的知识经验,努力结合现实的问题情境,将计算学习与解决问题有机结合,放手让学生自主探究分数乘法的意义。创设学生喜欢的实际情境,让学生根据实际问题的数量关系,列出算式。学生很容易结合整数乘法的意义,列出乘法算式。这样处理,既有利于学生主动地把整数乘法的意义推广到分数中来,即分数和整数相乘的意义与整数乘法的意义相同,都是求几个相同加数和的简便运算。
在教学分数和整数相乘的计算法则时,我指导学生从读一读,说一说,练一练,想一想,议一议五个方面入手,例如:教学3/10×5,首先让学生明确,要求3/10×5,也就是求3/10+3/10?3/10+3/10+3/10是多少,并联系同分母分数加法的计算得出3+3+3+3+3/10,然后让学生分析分子部分5个3连加就是35,并算出结果,在此基础上,引导学生观察计算过程,特别是3/10×5与35/10之间的联系,从而理解为什么“同分子和整数相乘的积作分子,分母不变”。接着让学生自己尝试练一练7/10×5,然后进行集体交流,看一看能不能在相乘之前的那一步先约分,比一比在什么时候约分计算可以简便一些,从而明白为了简便,能约分的先约分。
总之,本节课我能尽量调动学生的多种感官,改变以例题、示范、讲解为主的教学方式,改变以记忆法则、机械训练为主的学习方式,引导学生投入到探索与交流的学习活动之中,让学生变被动为主动,参与到算理的探讨、运算规律的归纳中来。
《分数与整数相乘》这是学生首次接触分数乘法。分数与整相乘在运算意义上与整数乘法一致,因而算法是教学的重点。
《课程标准》强调从学生的熟悉的生活经验和学习经验,让数学学习成为学生“生动活泼、主动发展和富有个性的过程”,本课重视了让学生成为学习的主人,积极主动地探究学习新知,体验成功的快乐!
我认为教者以下几点做得比较好:
1、结合现实的问题情境,引导学生理解分数乘法的意义。计算课是比较单调和枯燥的,为了避免单纯的机械计算,将计算学习与解决问题有机结合。创设了班里同学为教师节做装饰花的实际情境,引导学生明白分数和整数相乘的意义与整数乘法的意义相同,都是求几个相同加数的简便运算,又可以启发学生用加法算出3/10×3的结果。
2、借助同分母分数加法,自主探索分数和整数相乘的计算方法。由于分数和整数相乘可以转化成几个相同加数连加的算式,因此,例1放手让学生尝试计算,着重让学生说一说计算的思考过程。因为很多学生可能凭借经验只知道怎么算,不知道为什么这样算。尤其是对于分数和整数相乘时,为什么直接将分子与整数相乘的积作分子,而分母不变,学生不一定明确。因此,这节课不能仅仅满足学生会算,更重要的是要让学生理解分数与整数相乘的含义,关注学生理解分数与整数相乘的算理,理解和掌握为什么可以这样算?这样做的理由是什么?这样做能够很好的突出重点,突破难点,要让学生不仅知其然,更重要的是知其所以然。教材的例题侧重体现加法和乘法之间的转化,板书对照清楚明晰,学生很容易发现乘的计算方法,。
3、练习设计具有针对性,多样性,激励性,生活性。在本环节学生的技能得到了巩固和提升,特别是两个常见的改错题引发学生自我反思、自我完善计算方法,已达到算法的自主优化。
一、引导自主探索,了解分数与整数相乘的意义。
1、导入新课时,引导学生涂色表示3个米,目的是让学生认识到求3个米可以用加法计算,也可以用乘法计算,再借助所列的加法算式初步理解分数与整数相乘的意义,并为引导学生探索分数与整数相乘的计算方法进行了知识结构上的铺垫。
2、通过交流与讨论,引导学生主动联系已有的知识经验进行分析、归纳和类推,进一步发展学生合情推理能力,体验探索学习的乐趣。
二、加强过程体验,体会过程约分比结果约分更简便。
在解决例1的第(2)题时,我在处理算法多样化与算法优化时设计了88×8/11=?的练习,让学生用两种方法计算,加强过程体验,学生通过亲身体验后,体会到过程约分比结果约分更简便且不易错,形成一种内在需求,优化算法。
存在不足:
本课算理强调还不够,特别是练一练第1题,在学生独立完成后,我在组织交流时不够充分,只交流了学生的计算方法和结果,忽视了学生是如何涂出4个3/16的,后来我发现学生涂得方法很多,其实通过学生涂色写算式,可以沟通分数乘法和分数加法间的联系,进一步体会分数与整数相乘的意义,体会“求几个几分之几相加的和”可以用乘法计算的算理,我没有很好地把握教材这一练习设计的意图,没有敏锐地把握教学资源,很好地巩固算理。
分数乘整数的知识基础在于同分母分数加法的计算方法及分数的意义及整数乘法的意义等知识。在课堂的开始环节,我对这些内容进行了一定的复习,再进入分数乘整数的教学。
分数乘整数的算法很简单,在相乘时,分母不变,只把整数和分数的分子相乘作分子。在教学这个内容时,我关注到新教材在算理方面的重视,注意到图形和算式之间的联系,在计算前充分让学生感知画、涂图形的过程。因此,在后面计算方法的得出就水到渠成,比较容易了。再者,对“分数乘整数表示的意义”也有机的渗透,为后面的知识打好铺垫。
一堂课上下来,由于学生对内容比较容易接受,课堂上有了空余时间。学生对算理的理解比较清晰,但还存在的问题就是约分的环节,有些学生喜欢算出结果以后再约分,对计算过程约分还不愿意采用,教学反思《分数乘整数教学反思》。这一环节还应讲深讲透。学生可能对于这种在计算过程当中的约分,还是一知半解,对这样约分的道理理解得不够清楚。学习分数乘整数,学生在计算时肯定会遇到先约分后乘还是先乘后约分的问题。如果仅仅是为得到一个正确的结果,那么无论前者,还是后者,都无关紧要,只要不出差错,最后都能得到正确结果。显然,我们还需要学生养成良好的计算习惯,较高的计算速度和计算正确率!那么我们就必须让学生明白到底哪种思路更合理,更有助于自己的后续学习。作为分数乘法的第一节课——分数乘整数,形成先约分后计算的良好计算习惯,对于提高学生计算的正确率和计算速度,有着很重要的作用。在教学分数乘法在过程中约分时,我给学生练习的题目是: ×5,并且列出两种做法让学生进行比较。但我觉得这道题并不能体现在计算过程中先约分的优越性。应该将题目改得稍复杂些,变成“13× 5/26”,并且和同学们一起比赛谁做得快。如果哪位学生是用整数直接乘以分子的,速度当然会很慢,当做得最快的同学展示自己的做法时,其他同学恍然大悟,深刻体会到计算过程中先约分,可以化繁为简。这样,学生在做分数乘法时,不仅仅满足于“分子和整数相乘的积作分子,分母不变”,而是记住“能约分的要约分”这一要点。
本节课教学时,我充分发挥了学生的积极主动性,真正地体现了学生的主体地位,教师真正地成为课堂的组织者和引导者。在例1第一问的教学中,先让学生尝试涂色练习,然后通过猜想——观察——发现规律,在小组中交流自己的发现,而在例1的第二问得教学时我采用大胆放手,让学生独立尝试完成,再让自己看书校对,培养学生充分利用课本资源,学会学习,最后集体补充完善分数与整数相乘的计算方法。整节课磕磕碰碰,在学生的对比、发现、交流中学习,同时也反映出一些不足。下面我就这节课的教学谈谈一些感想。
1、充分利用教材资源,概括计算方法和挖掘算理
计算教学的课堂中注重的是讲明算理,掌握算法,一般对于学生来说,是比较单调和枯燥的,为了避免单纯的机械计算,我创设了学生做绸花的实际情境,将计算教学与解决问题有机结合。学生通过观察、涂条形图验证口算3/10×3的答案,再列出算式计算验证,从而有利于理解分数乘法的意义,又渗透了猜想——验证——应用的数学思想。这样处理,既有利于学生主动地把整数乘法的意义推广到分数乘法中来,即分数和整数相乘的意义与整数乘法的意义相同,都是求几个相同加数的和的简便运算,又可以启发学生用加法算出3/10×3的结果。在教学中,我抓住一米绸带的这幅图先让学生涂出3/10米,然后涂出3个3/10米,再列式计算,图形结合,借助图形来说明算理,理解几个相同加数的和用乘法来计算。
在计算教学中,往往有时我们往往会只关注教会学生如何计算,对为什么可以这样计算缺乏足够的重视,而造成了由于算理不清而导致的只会机械计算,不会灵活运用的状况。因此,在这部分的教学中,我通过图文结合,引导观察,巧妙地用色笔作记号,再适时追问,引导学生深入理解算理,让学生明白分数乘整数为什么分母不变,分子与整数相乘的积作分子的道理。这样做能够很好地突出重点,突破难点,让学生知其然,更知其所以然。最后学生归纳、补充,初步感知分数与整数相乘的计算方法。
2、实现教学的个性化,发展学生的能力。
相比去年教学本课时,我又做了大胆地尝试,备这节课时又想起去年执教镇教研课的情景,用同年级的老师的话是“课堂教学流畅,一气呵成,要想有所突破,会很难”。细想感觉学生的积极性是很高,算理也理解得很透彻,但总有种学生是“牵得过多,主观能动性发挥得不太好,所以在教学例1第二问时我改变了原来的方式,大胆放手,先让学生独立尝试计算做5朵这样的绸花要用绸带多少米?再打开书本互相补充学习,并观察比较哪一种方法更好?最后交流完善分数与整数相乘的计算方法(能先约分的要先约分再计算),并互相质疑。其用意是在利用身边的资源,培养学生学会学习,并能将自己的发现用语言表达出来。为“课堂教学过关”做了一次大胆地尝试,但情况不是十分理想,特别是学生的数学语言表达能力不强。在今后的教学中,我要更多地关注学生小组合作学习能力,交流能力,自学能力,引导学生学会学习数学。
通过这节课的改革尝试,我深深体会到:在平时的课堂教学中,我们应该大胆放手让学生去探索、归纳,充分地相信孩子,把学习的主动权交还给孩子,教师要具有引发学生思考的能力,促使形成合作、探索、质疑、互助的良好学习氛围。
本节课我从复习同分母分数加法引入,得出整数乘法的意义和分数乘整数的意义相同都是求几个相同加数和的简便运算,由此进入分数乘整数方法的计算教学。教学方法时我注重算理的讲解、注重图形和算式的联系。可以说这节课的内容很简单,但作业反馈的情况看正确率却很低。存在的问题就是约分的环节,有些学生喜欢算出结果以后再约分,就比较爱出错。再由于上学期的约分知识很多学生就不熟练,有不少学生仍不断出现约分错误和忘记约分的情况。
作为分数乘法的第一节课——分数乘整数,形成先约分后计算的良好计算习惯,对于提高学生计算的正确率和计算速度,有着很重要的作用。