《正比例》这一节涉及到的知识点比较多:比的意义、比的化简、比的应用、比与分数和除法的关系、商不变的规律等等。在上一节学习《变化的量》时学生已经体会到生活中存在着变量之间的关系。这些为学生学习正比例,理解正比例的意义奠定了基础。《正比例》一节主要是让学生理解正比例的意义以及如何判断两个量成正比例?这一节课我是按照课本上的一系列情境来展开教学的。首先出示正方形周长与变长、面积与边长之间变化情况的表格,并让学生说说发现了什么?先引导学生填写表格,并说出两组变量之间的变化情况,然后找出两者之间的共同点,引导学生说出不同点。 接着呈现速度一定,路程和时间这一组变量的变化情况表格,先填写表格,然后观察发现了什么?
最后,引出正比例的意义及判断的依据,并让学生用自己的话说一说的的理解:如何判断两个量成正比例。学生总结得出结论:判断两种量是否成正比例的依据:
1、两种变量是不是相关联的两个量;
2、在变化的过程中,这两种量的比值是否一定。
但是在教学中同样也感觉到,当学生在找出两个量之间的关系时:
部分学生读出时:一分之四。这样读其实也不错,但是严格分析背后原因,学生对比的意义以及比与分数的关系掌握的还是不太好。另外,部分学生对如何判断两个量成正比例不能有序、有据的思考。继续让学生通过理解来记忆。让学生相互之间、小组之间说说对正比例意义及判断依据的理解,达到对该概念的内化。
这部分内容是在教学过比和比例的知识的基础上进行教学的,着重使学生理解正比例的意义。单从教材的量来看,书本从第11页至13页,满满的三页纸,要比一般的语文课文还要长,从这点上让我感受到教学难度相当大。从内容上看,“成正比例的量”这一内容,在整个小学阶段是一个较抽象的概念,他不仅要让学生理解其意义,还要学会判断两种是否是成正比例的量,同时还要理解用字母公式来表示正比例关系,要渗透给学生一些函数的思想,为以后初中学习打下基础。
根据教材和内容的特点,我选择了师生互动,以教师的“引”为主导,学生为主体,让学生在互动交流中去理解成正比例的量这一概念。首先,让学生弄清什么叫“两种相关联”的量,我引导学生去从表格中去发现时间和路程两种量的变化情况,在变化中发现:路程随着时间的变化而变化的,同时引导学生初步感知成正比例的两种量的变化方向性。其次,我进一步引导学生考虑:路程随着时间的变化而变化,在这一变化过程中,有什么规律呢?学生看了表中之后,发现路程和时间比的比值是一样的,都是90。这时,教师也举了一个例子,就是450÷9=50,从反面的例子,让学生理解相对应的路程和时间的比的比值都是90,从而突破了正比例关系的第二个难点。两种量中相对应的两个数的比会一定。把学生对成正比例量的意义的理解成一系统。由于学生还是第一次接触这一概念,之后,例2的学习还是让学生对比着例1来自己理解数量和总价的正比例关系。最后,再两个例题学习的基础上总结出成正比例量的意义,把这意义从局部的路程和时间、数量和总价推广到其他数量之间的关系。
其实我们这部分的内容在五年级就已经学过了,只是没有告诉学生这样的两种量的变换规律就是成正比例。特别是我们在上学期学过了比的意义、比的化简与比的应用。联系比例的式子体会到生活中存在这很多像这样的变量关系。让学生体会生活中存在大量相关联的量,它们之间的关系有着共同之处,从而引导学生认识成正比例的量。
课堂上我设计了情境:当单价一定时,总价与数量的变化关系。先让学生观察数量是怎样变化的,再看总价又是怎样变化的。引导学生观察并思考:当数量发生变化时,总价怎样变化;接着一个情境则是,购买同一种苹果(也就是当单价一定时),应付的钱数与购买的苹果质量之间的关系。引导学生认识到:当速度一定时,路程随时间的变化而变化,在变化的过程中路程与时间的比值相同;当单价一定时,应付的钱数随购买数量的变化而变化,在变化过程中应付的钱数与质量的比值相同。让学生总结出:
1、两种变量是不是相关联的量;
2、在变化的过程中,这两种量比值是否一定。
“正比例的意义”是一个对于小学生来说非常抽象的数学概念性知识。昨天,我试教了这一课,在教学中调动了学生的生活经验,用日常概念来帮助学生理解数学概念,帮助学生初步感知,完成对新知的建构。然后,通过例题指导学生主动概括出正比例的本质特征,学生的理解深刻,准确。
由于学生在上学期已经学过比的意义、比的化简与比的应用。在上一节课也体会了生活中存在的变量之间的关系,这些都为学生学习正比例奠定了基础,正比例关系是数学中比较重要的一种数量关系,它也为学习反比例进行铺垫,同时,学生理解正比例的意义往往比较困难。为此,我密切联系学生已有的生活经验和学习经验,设计了系列情境,让学生体会生活中存在大量相关联的量,它们之间的关系有着共同之处,从而引发学生的讨论和思考,引导学生认识成正比例的量以及正比例在生活中的广泛存在。
我首先给学生提共了正方形的周长与边长和面积与边长的变化关系。让学生独立填表、观察,然后与同伴交流,通过表格、图象、表达式的比较,体会到虽然正方形的周长和面积都随边长的增加而增加,但正方形的周长与边长、面积与边长的变化规律并不相同。同时,学生将初步感知“在变化过程中,正方形的周长与边长的比值一定”,为认识正比例奠定基础。同时,借助图形直观、动态地体现了正方形的周长与边长“成正比”的过程,为学生后面学习正比例的图象积累经验。接着,我给学生提供第二个情境:当速度一定时,汽车行驶的路程与时间的变化关系。教学时,我先让学生把汽车行驶的时间和路程表填完整,引导学生观察并思考:当时间发生变化时,路程怎样变化第三个情境则是,购买同一种苹果时,应付的钱数与购买的苹果质量之间的关系。
通过以上这两个实例,引导学生认识到:路程随时间的变化而变化,在变化的过程中路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,在变化过程中应付的钱数与质量的比值相同。在此基础上,让学生通过比较,概括出以上实例的共同点,引出“正比例”。最后,通过小结、练习让学生总结出判断两种量是否成正比例的依据:
1、两种相关联的变量;
2、当一种量变化时,另一种量也随着变化;
3、这两种量中相对应的两个数的比值一定。
意义建构需要在认知系统中找到与之相关联的旧知识作为“固定点”,能作为“固定点”的旧知识,可以是统一的,也可以是对立的。在这一课中,我设计了三组相关联的量:学生通过观查比较,抽象概括出正比例的意义。在上述的几种关系中,都是比值不变的关系。通过比较,学生很容易抓住概念中最本质的东西,使正比例关系中的'比值一定,在学生头脑中留下更深刻的印像。在理解正比例意义的同时出示了其他的如和、差、积的关系,通过比较,拓宽了学生的知识面。心理学研究表明,对比能使人受到更强烈刺激。黑白两色放在一起,白的更白,黑的更黑,就是这个道理。几种关系放在一起比较,也可以达到这样的效果。
学生感知的数学材料,离学生越近,学生越感兴趣,也就越容易接受,对探索自己提出的问题具有更高的热情。本节课开始所举的三个例子,遵循了尊重学生已有知识水平的原则,选取的都是学生非常熟悉的例子。这是学生一开始就以饱满的热情投入到学习中来的重要原因。这些例题不仅有一定的趣味性,而且其中包含的道理很容易理解(学生已学的数量关系)。在此基础上,要学生将其中变量与不变量的规律找出来,就显得容易多了。找出规律后,再建立数学模型,也就水到渠成了。当学生初步感知成正比例关系的特点,心中形成一种朦胧的概念后,让学生举例,例子来自学生,不仅创设了开放的问题情境,而且营造了宽松的学习氛围。在这样的一系列例子的基础上,抽象概括出完整、明确的正比例意义,更符合学生的认知规律。
在整个教学过程中,教师只向学生提供部分的素材,还有部分素材来自学生。整个探究过程中给学生较充分的思考和交流的空间,引导学生开展自主性的数学活动。如找量的变化规律、变中不变的因素、对比找出本质特征、猜想、给出定义、字母公式表示、解决问题、画图等,主要由学生进行,学生经历“观察、分析、比较、归纳、应用”过程。
星期五我上了研究课《正比例》,本课是在学生学习了变化的量之后的一个内容,通过学习,使学生理解正比例的意义,会正确判断成正比例的量,并能根据特点解决生活中的一些简单问题。根据教材的内容和特点,我试采用永威的“先教后学,当堂检测”的模式,实验后感觉孩子们不会自学,当自学指导出示后,都在那等结果,所以我认为应在课堂中逐步培养学生的自主学习能力。
一、复习旧知,引入课题
课前,我先提问学生:“什么是相关联的量,谁能举个例子说一说?”学生很快说出“时间、路程、速度”之间的关系、“总价、数量、单价”的关系等等。由此我导入了新课:这节课我们要以一种新的观点来继续深入研究这些数量之间的关系。这样的导入就为下面的新授进行了有效的铺垫。
二、自主探究,学习新知。
出示例1表格,让学生观察并说说所获得的信息。首先,要让学生弄清什么叫“两种相关联”的量。我引导学生从表格中去发现时间和路程两种量的变化情况,在变化中发现:路程随着时间的变化而变化的,同时引导学生初步感知成正比例的两种量的变化方向性。其次,我进一步引导学生考虑:路程随着时间的变化而变化,在这一变化过程中,有什么规律呢?让学生试着写出几组行驶的路程和它所对应的时间的比的比值,发现它们比值是一样的,都是80。接着就追问:“这里的80表示什么?”学生很快回答出是“速度”,于是我就顺势揭示了“路程和它所对应的时间的比的比值一定时,路程就和时成正比例,路程和时间是成正比例的量。”这样就很好的解决了本课的难点。接着让学生做书上的“试一试”,用刚才所学的知识来判断总价和数量是否成正比例。学生很好的解决了这一问题。然后让学生对例1和“试一试”进行比较,发现都有这样共同的特点:“都有两个相关联的变量,两个量的比的比值都是一定的,这两个量都是成正比例”,引出了用字母来表示正比例Y:X=K(一定),Y和X成正比例。
三、巩固拓展,深化提高。
理清了新知识的知识脉络后,就要进行相应的练习,让学生来判断两种量是不是成正比例,要求学生独立思考、认真分析,并要能说出判断的理由,这样既巩固了新知,又锻炼了学生的语言表达能力。
一节课下来,学生在自主探究中得出了规律,学习效果很好,并且能够体验到了学习的快乐。而我也深深的体会到在教学过程中就应该“该放手时就放手”。