第三单元简便计算已经学完了,说起这单元的内容,可以用千变万化这个词来形容。简便计算,目的在于使用各种运算定律,使复杂的计算变得简单,从而提高计算速度和正确率。正是应该使其简单化的定律,却变成了同学们为之头疼的难题。
在以往教过的学生中,也不乏这样的同学存在,他们对乘法结合律和乘法分配律分辨不清,往往在做题时混在一起使用。比如88×125,这道题可以用两种方法进行简便运算。
把88分成80+8,接下来就采用乘法分配律。把88分成8×11,那就必须用乘法结合律,而他们明明分成和的形式,反倒用乘法结合律去做。
就是这样一个并不难的题,却把同学们绕得晕头转向。我时常在想,是他们没有彻底理解乘法结合律和乘法分配律吗?如若这样,还得单独对他们进行辅导。除此以外,千变万化的题型,也让刚刚接触这些定律的孩子们张冠李戴,或许是初次接触这么多的定律,或许是还没有找到做题的窍门,无论什么原因,只要经过刻苦努力,就一定有所收获。
这部分的学习纵然是复杂的,但复杂中也会有规律可循,正如25×4、125×8,诸如这类能够凑整的数相乘或相加,正好运用到定律当中去,只要有25、125的出现,就去找它们的伙伴4和8,如此就能使复杂的计算简单化。我们学习这些定律,不但要掌握基本变化形式,更要灵活运用,还需要反复练习,这样才能提高计算速度和正确率。
简便计算是小学计算教学中的重要组成部分。我的理解是:简便计算应该是灵活、正确、合理地运用各种性质、定律等,使复杂的计算变得简单,从而大幅度地提高计算速度及正确率。
这段时间我们一直在教学简算,开始时学生对简算还挺感兴趣,毕竟简算可以摆脱那些繁琐的四则混合运算了,也不用竖式计算了,可是随着简算类型的不断增多,学生开始对一些类型混淆了,随着简算方法的多样化,简算的准确性也大打折扣。
于是,我开始困惑、开始思考、我开始发现:简算不仅要求学生能明确运算顺序,正确计算,而且还要求学生有一定的观察能力,甚至要有一些直觉,能够进行合理的分析,找出其中能够进行简便运算的特征,并合理地进行简便运算。
于是,我让学生做了大量的直接简算的题。通过练习,引导学生总结出一些常见的可以简算的对象,如:“25与4相乘”、“125与8相乘”、“5与任何双数相乘”以及其他的可以凑整的数,同时使学生对简算有了比较深刻的理解。
其中“运用乘法分配律进行简算”是学生最不容易掌握的。根据以前的教学我发现,特别是一些变式简算就更加的困难了。我认为主要原因就是学生没有自觉观察算式特点的习惯。学生对于计算的目的是得到答案,而忽略了计算的过程,这也跟我平时的教学习惯有很大的关系。
比如:有这样一道题(80+8)×25,学生完成后,我随即将该题改为“88×25”让学生做,学生做出了两种答案:
①、88×25=80×25+8×25=2000+200=2200;
②、88×25=11×(8×25)=11×200=2200。
我请学生分别介绍了他们的想法,他们说:第①种是把88分成80+8,再利用乘法分配律,让他们分别同25相乘;第②种则将88分成8×11,然后利用乘法交换率和结合率,先把8与25相乘,最后再乘11。
听完学生的介绍后,我进行了总结,首先肯定了两种答案的正确,然后对两种答案进行了分析:两种答案的共同之处在于都发现了8与25相乘非常简便,可以凑整。
于是想方设法对88进行分解,因此都把握住了这道题的关键,所以都是正确的;两种解法的区别是,分解的方法不同,第①种解法是用加法进行的分解,所以使用的是乘法分配律。第②种解法用乘法进行的分解,所以使用的是乘法交换律和结合律。方法不同却有异曲同工之处。
由此可见,简便运算的思路会有很多,只要把握“凑整”这个解题关键,正确、合理地使用运算定律,就是正确的。
本节课的新知识在以前的数学学习中都有相应的认知基础,学了本节的新知识可以促进学生更深入地认识原来学过的知识和方法。在教学加法运算定律的过程中,我始终以学生为本,依据学生的年龄特点,把握学生的认识规律,取得了较好的教学效果。
1、密切联系学生的生活实际
教学时,我充分利用教材中呈现具体情境,从学生熟悉的实际问题的解答引入,激发学生主动学习的需要,为教师进行教学活动创设了良好的氛围。通过解决情境中的问题,让学生对两个算式进行观察比较,唤醒了学生已有的知识经验,使学生初步感知加法运算律。在探索加法运算律的过程中,为学生提供自主探索的时间和空间,让学生经历探索的过程,获得成功的体验,增强学生学习数学的信心。
2、培养学生归纳概括能力
教学中,两个运算定律都是让学生通过观察、比较和分析,找到实际问题不同解法之间的共同特点,初步感受运算规律。然后让学生根据对运算定律的初步感知举出更多的例子,进一步分析、比较,发现规律,并叙述所发现的规律。
再让学生用自己喜欢的方法表示规律,而不是像过去那样,统一用字母来表示。这样实现了运算律的抽象内化,一方面有利于符号感的培养,方便记忆;另一方面提高了知识的抽象概括程度,也为以后正式教学用字母表示数打下初步的基础。同时,使学生体会到符号的简洁性,从而发展了学生的符号感。
本节课的教学,让学生经历了探索、发现、反思的过程,对加法交换律和加法结合律有了充分的认识和自己的理解。但在教学的过程中仍存在着诸多的不足之处:
在探索加法结合律的过程中应该再放开一些,引导学生观察、比较和分析,找到实际问题不同解法之间的共同特点,初步感受运算律。
在教学加法结合律时应该让学生多举些例子,让学生去评价举的例子好不好,让学生自己去发现结合是把可以得出整百整十的数放在一起,而不是随意的乱编。然后进一步分析、比较,发现规律,并先后用符号字母表示出发现的规律。全班交流时,可以让学生具体说说他们所举的例子。其中,对于直接写等式的情况,可以引导学生进行甄别,使学生形成合理、科学的验证方法。
本课难点,如结合律等号两边的加数都是相同的,不同的是位置和运算顺序;结合律的特点是运用小括号,小括号的作用是把两个加数结合起来先算、让学生在课堂上初步感受到应用加法交换律和结合律可以使一些计算简便,发展应用意识。在学完两种运算定律后,应该给学生足够的时间练习巩固,加深学生的理性认识,促进学生思维灵活性的发展。
本节课的教学分四个部分,第一部分:复习旧知,体验“凑整”的思想;第二部分:教学例题和试一试,并进行适当延伸;第三部分:教学一个数加上一个接近整百数的计算。第四部分:运用新知解决实际问题。
第一部分:复习旧知,体验“凑整”的思想
简便运算是充分合理地应用运算定律、运算性质的结果。理解运算定律是学习简便运算的前提。所以设计了本环节,复习加法交换律和加法结合律。紧接着“求三角形角上的三个数的和”让学生初步体会“凑整”的思想,为新知的学习做有益的铺垫。
第二环节:教学例题和试一试,并进行适当延伸
结合学生生活“急速24点大赛”创设情境,学生通过计算呈现出不同的解答方法,引导学生在比较中体验出应用运算律可以使计算简便,紧接着出示“试一试”的第一题,“要求”学生应用简便方法计算。到这里都是在让学生“体验简便”,然后在“比一比,看谁能很快说出每组气球上三个数的和?”让学生开始“选择简便”。
接下来的教学围绕“体验灵活,适应灵活”进行“变式训练”。
变式一:教学“试一试”的第二题。和例题比较,这题需要先运用“加法交换律”再运用“加法结合律”,为培养学生的逻辑思维,养成良好的计算习惯,在这里强调了第一步是去括号,然后再进行计算,通过前面的教学,学生已经会主动简便去凑整百数了,所以要把78和22结合必须要交换加数的位置,让学生体验灵活运用运算律进行简便计算。
变式二:四个数相加怎样运用简便计算“115+132+118+85”,前面我们练习的都是三个数相加,这道题出现了四个加数,但凑成整十数整百数的方法是不变的。让学生在主动运用加法运算律进行简便计算中,再一次体验简便计算并不局限在三个数相加,从而体验灵活。
在数学学习中,学生不仅要习得知识,而且要习得技能。在基础知识掌握牢固的前提下,我们就可以引导学生学习一些简便运算的技能技法,让学生轻松地进行简便运算。有些题目不能直接根据运算律、运算性质进行简便运算,我们要引导学生学习“拆数凑整”的技法。所以安排了第三部分的教学,也就是变式三:一个数加上一个接近整百数的计算。
简便计算就是在题目中找凑成“整百数”、“整十数”,这题引导学生在题目中找“整百数”,找不到整百数的情况下,却会发现题目中有个数接近整百数,需要学生换个思维方式,把接近整百数拆成“整百数加上一个一位数”,也就是“拆数凑整”的方法,但万变不离其宗,拆数的目的仍然是凑整。从而体验灵活地“凑整”。
经过这三道变式训练,让学生由“体验灵活”到“适应灵活”的一个提升。
最后进行全课总结,然后拓展了一题“175+199”,让学生在合作与交流中运用本节课学习的内容,进行灵活运用。概括地说,“引导学生把例题里获得的体验转化成进行简便运算的内在动力,使简便运算成为学生的自我需要和自觉要求”,是我对本节课的思考与追求。
教学加减法、乘除法的运算定律,学生对单纯的运算定律能有个初步的理解,但是对实际计算中运算定律的运用不能灵活地加以运用,对这节的教学我有以下几点想法:
1、充分利用学生已有的感性认识,促进学习的迁移。
对于小学生来说,运算定律的概括具有一定的抽象性。在此基础上,本单元的教学应着重帮助学生把这些零散的感性认识上升为理性认识。
在“交换律”这节课中,教师在目标领域中设置了过程性目标,不仅和学生研究了“交换律”“是什么”,更重要的是让学生体验了数学问题的产生、碰到问题“怎么办”和“如何解决问题”。激励学生从已有的知识结构中提取有效的信息,加以观察、分析,主动获得“加法交换律和乘法交换律”,在问题解决的过程中既获得了解决问题的方法,又体验了成功的情感。
2、注意体现算法多样化、个性化的数学课程改革精神,培养学生灵活、合理选择算法的能力。
对于小学生来说,运算定律的运用具有一定的灵活性,对于数学能力的要求较高,这是问题的一个方面。另一个方面,运算定律的运用也为培养和发展学生思维的灵活性提供了极好的机会。
教学时,要注意让学生探究、尝试,让学生交流,相应地,老师也应发挥主导作用,当学生探究时,仔细观察,认真揣摩学生的思路,酌情因势利导,不失时机地给予适度启发,当学生交流时,耐心倾听,洞悉学生的真实想法,加以必要的点拨,帮助学生讲清自己的算法,让其他同学也能明白。
3.注重教学内容的现实性。
(1)找准教学的起点。对学生学习起点的`正确估计是设计适合每个学生自立学习的教学过程的基本点,它直接影响新知识的学习程度。在过去的学习中,学生对加法和乘法交换律已有大量的感性认识,并能运用交换加数(因数)的位置来验算加法(乘法),所以这节课教师把重点放在引导学生发现并用数学语言表述数学规律和总结怎样获得规律的方法上,使学生的认识由感性上升到理性。
(2)找到生活的原型。加法交换律和乘法交换律的实质是交换位置,结果不变,这种数学思想在生活中到处存在。本节课首先引导学生观察身边的现象,渗透变与不变的的观点;采撷生活数学的实例。引导学生产生疑问,同时激发学生大胆探索的兴趣。
(3)改进材料的呈现方式。教材只是提供了教学的基本内容、基本思路,应在尊重教材的基础上,根据学生的实际对教材内容进行有目的的选择、补充和调整,让学生参与教学材料的提供与组织,给学生创设了一个创新和实践的学习环境,既激发了学生的学习动机和探究欲望,又使学生的身心得到了一种成功的体验。
这节课的内容是两数相乘的两种简便计算,一种是通过将其中一个数转变为两个数相乘的形式使得运算简单,这是本节课的重点;另一种是通过将其中一个数转变为两个数相除的形式是的计算简便,这是学生理解起来的一个难点。而将哪个数变,变为哪种形式,又变为哪两个数合适是本节课的重点加难点。
在教学过程中,与事先料想的完全一样,学生对于两数相乘替换一数理解起来没有问题,对于两数相除的形式就不太理解。连在班级中很突出的学生也不能回答到点子上,需要老师加以引导,但是对于其作用都能理解,这一点还是很不错的。
另外,对于两数相乘的简便计算有多种,由于先前学习的乘法分配律,学生大多更习惯于将其中一数转化为两数相加的形式,其次是两数相乘的形式。在巩固练习环节中学生基本上没有用两数相除的形式。
在巩固练习时,对学生的要求是比一比谁的算法数量更多更简单,学生对于这种带着比赛性质的活动明显更加热衷,课堂氛围更加活跃,许多平时不太爱表现自己的学生也能够踊跃地举手发言,这是一个很好的启发,在以后的教学过程中,可以尽量多的采用这种形式调动学生的积极性。
连除简便计算是在学生学习了加法、乘法运算定律和减法性质的基础上进行教学的。让学生理解并掌握“一个数连续除以两个数,可以用这个数除以两个除数的积,也可以用这个数先除以第二个数再除以第一个数让运算变得简便”是教学的重点,因此我有意识地强化了“根据算式特点灵活运用除法运算性质进行简便计算。”这也是本课的难点。为了突破重难点,我在设计时作了这样的处理:
1、在教学中渗透学习方法的指导,因为有减法性质的基础,我认为学生应用类比迁移能够比较自然地想到除法的运算性质,所以我依托“类比迁移”的数学思想,以“猜想---验证---应用”的教学思想引导学生展开自主探究。采用这种教学思路的意义在于渗透一种“学习方法”,这对培养学生的可持续发展能力应该是有帮助的。有句话说得好,“让学生在游泳中学会游泳”,这也是我在平时课堂教学中想努力追求的。
2、教学环节设计紧凑,环环相扣,从复习铺垫到新知的探究和巩固练习我都做了精心的设计。复习铺垫部分我设计了几道可以进行简便计算的加法、减法、乘法和除法的练习题,以这几道题为依托为进入下个环节的猜测进行了准备,比如说:148+75+5=343-75-25=25×(4×6)=425-(125+27)=237-38-137=它们都和本节课的知识有紧密的联系,目的是让它们根据这几道题的方法很容易的联想到除法是不是也有这样的规律。
事实证明,这几道题是有效的,当我出示4500÷25÷4=时,并提出问题是不是也有简便方法时,很多孩子马上进行了猜测,很自然的引出了新知的探究,让孩子们的猜测更有目的性、方向性和可行性,我认为这个地方的设计思路很好,但由于这些数值偏大,学生算起来不太好算,而这节课重点是为了探究规律,如果把数设计的小一点会更好算,重点会更突出,更节省时间。
新知的探究环节我让学生以小组为单位举出这样的实例,这个环节虽然设计很好,但由于孩子年龄小,在举例子时又缺乏引导,很多孩子无所适从,不会举例子,我只好亡羊补牢,又进行引导,结果浪费了宝贵的时间,以至后来的环节时间有点紧,如果备课时再细心一些,充分考虑到孩子的起点,效果会好得多。但是巩固练习部分我觉得设计很好,不仅形式多样而且内容充实,有效的巩固了新知,让孩子对除法的性质和简便运算理解的更透彻,运用得更熟练!不足是因为前面的环节占用时间太多,练习题没有处理完。
这节课还有很多不足,发现规律后,我本来想让学生结合生活实例再次验证,但因为对习题的选择不是太合适,所以只验证了其中的一个规律,而对于第二个规律,习题却不能完成验证,这一点是一个失误,应该进行修正,如果把习题再认真选一选效果一定要会好得多。
还有本节课教师的语言设计不是很精练,不能起到画龙点睛的效果,验证结束后,学生得到连除的计算方法有三种,为了强调简便计算,我应该及时引导:“这三种方法,如果让你选择,你会选择哪一种?”从而让学生明白,解决问题的方法有很多种,但要学会根据算式中的数据特点,灵活选择简便的方法进行计算。这也是我们的数学的价值所在,可惜没有及时引导,很遗憾!
总之,本节课既有成功,又有不足,在第二次上课时,我会扬长补短,争取把这节课上的更完美!
⑴学会尊重——提供适宜的生成环境
学生是学习的主体,课堂设计要以学生的生活为主线,我以小明过“六一”节买食品为情景作为切入点,显得自然而又有诱惑力。另外在探究计算的过程中,充分尊重学生的原有认知水平,放手让学生自主探究不同的计算方法,进而体会整数加减法运算定律和性质对小数也同样是适用的,这样知识就自然生成。
⑵细研教材——充分挖掘潜隐信息
本节课是在充分吃透教材基础之上设计出来的,比如教材例题只是点出整数加法定律对小数同样适用,但并没有明确说出小数减法的情况及如何发现简便算法这两点,但两点又是至关重要的,所以我设计时注重引导学生发现小数凑成整数的特点,并拓展到小数减法的情况,充分的挖掘了教材中深层的信息。
⑶注重生成——积淀宝贵经验
对于学生生成的资源,老师要善于运用。比如:在学生发现两个小数结合相加可以凑成整数时,老师要积极的引导积淀,再如,学生在做第一个练习时,学生会生成两个小数相加或相减结果是整数时的特征这个知识点,这对学生找到简便计算方法很重要。所这时老师要积极引导学生积淀这些宝贵的经验。
分数乘法简便计算,是学生学习了分数加减法混合运算,整数、小数的简便计算的基础上进行学习的,然而,原以为学生已学过了整数和小数的简便运算,分数乘法简便运算又只应用乘法交换律、结合律和分配律,学生掌握肯定不错。事实证明上课效果还不错,可是作业中错误率极高。
回顾了这节课的教学,整节课通过学生预习反馈,自主举例验证,尝试解决,交流讨论,自主总结等方法,发展学生的自主学习解决问题能力。却忽略了让学生理解知识这个最根本的教学目标。问题主要有以下三种:一是混合运算和简便计算题混淆,乱用简便运算。
二是分配律用错的最多,原先的整数、小数利用乘法分配率进行简便计算就是简便计算的难点,碰到分数出错率就更多了。三是分数加减法混合运算与分数乘法计算混淆。
针对这些现象我采取了以下措施:一引导学生回顾分数乘法和加减法的意义,理解各自的意义;二联系分数乘法和加减法各自的计算方法,并采取针对性练习;三复习整数、小数的与之相关的简便运算,并对常见的分数乘法简便运算的题型予以分类整理,辅之对应练习;四是加强审题的训练,让学生学会判断。
五是加强对比练习,认真分析哪些可以简便,哪些不能简便。其实最主要还是抓班级里学习有困难的学生,因为这些错误类型几乎都是由他们所创。