本节课的教学内容是四年级上册第三单元的例4---“积的变化规律”。在乘法运算中探索积的变化规律是整数四则运算中内容结构的一个重要方面。教材例题以两组乘法算式为载体,引导学生探索当一个因数不变时,另一个因数与积的变化情况,从中归纳出积的变化规律。在这个过程的探索中,我让学生理解两数相乘时,积的变化随其中一个因数(或两个因数)的变化而变化,同时体会事物间是密切相关的,受到辨证思想的启蒙教育。
在教学过程中,有以下几点感觉还不错的地方:
1、我设计了让学生自己举例像书上那样写出2组算式,还设计了让学生写出自己的发现,这样让学生有自己的独立思考,也对后面规律的揭示起到铺垫的作用。
2、通过规律过程的探索,不但让学生理解两数相乘时积的变化随其中一个因数的变化而变化,同时体会事物间是密切联系的,培养学生迁移类推的能力。
3、练习的设计能由易到难,让学生在学习中感到轻松自如,并且重视每次练习的反馈,及时掌握学生的学习情况。
这节课也有一些不足之处:
1、教师的语言不够简练,在教学2的规律时让学生探究规律的时间太多,有的时候学生已经说的很好了就不要让其他学生再说了。
2、教师的提问要精练,例如教师提问“你能用我们今天学的知识来解决下面的问题吗?”可以换成“这节课我们用积的变化规律来解决下面的问题。”
探索规律是一个发现关系、发展思维的过程,有利于学生夯实基础,鼓励创新,更能够体现数学思考,凸显过程与方法,同时,也能够让学生在自主探索与思考中感受到学习的快乐,形成积极的学习情感与态度。教学中,我首先从调动学生的积极性,激发学生的兴趣入手,给教材例题中的算式创设了具体的情境,之后再根据学生回答,提出问题,让学生去思考,去观察,去寻找。
其次我结合学生的认知规律,设置了发现-验证-小结-应用这样一些学习探究过程,并通过学生独立观察、分组验证、集体小结等活动,让学生亲身经历自主探究规律的全过程,较好的发挥了学生学习的主体地位,强化了学生对积的变化规律的理解和掌握。同时我还设计了应用规律解决问题和对规律应用的适度拓展,使得不同层面的的学生都得到了发展学生在整个学习过程中不但收货了知识提高了能力而且还在享受着探究的乐趣和成功的喜悦。
《积的变化规律》是在学生掌握了三位数乘两位数的计算方法的基础上进行教学的。本节课主要引导学生探索当一个因数不变时,另一个因数与积的变化情况,从中归纳出积的.变化规律。
在本课教学中,我注重让学生充分参与积的变化这个规律的发现,让学生在充分地观察、大量的举例中去感悟积的变化的规律,充分调动学生参与的主动性,初步构建自己的认知体系。让学生自己经历研究问题的一般方法是:研究具体问题——归纳发现规律——解释说明规律——举例验证规律。让学生真正成为了课堂的主人,给学生留出了充足的探索空间,让学生自主地进行探索与交流。老师只是适时补充或纠正。我在练习题的设计上,既注重了基础知识的巩固,又注意了不同层次学生的需求。我不仅使学生了解课本上的积的变化规律:两数相乘,一个因数不变,另一个因数乘几,积就乘几;我还通过练习,让学生感知了:两数相乘,一个因数乘几,另一个因数除以几,积不变的规律;两数相乘,两个因数分别扩大若干倍,积就扩大两因数扩大倍数的积的倍数。如:6×2=12 60×20=1200。拓展了学生的思路,我认为平时的教学不应受教材的框框限制,适合自己,适合学生,教会学生思考的方法,培养学生的数学思想是最重要的。
但我反思自己课堂上的一个现象就是:学生通过举例、观察对积的变化规律有了初步的感悟、也有了初步的理解,但学生在描述规律时,语言总是不够准确、表述总是不够完整。“语言表达是学生思维的全面展现”,学生们对于新知内容的理解在很大程度上靠语言描绘去反馈,当学生的概括能力受挫时,我想:首先应该反思的是我们的教学是否让学生真正明白了。当学生真正明白了一道、两道、十道,甚至更多的题目后,怎样概括,而不是让学生就题论题似乎也是个问题。今后我要不断尝试充分地发挥自己的主导作用,怎样抓住一些关键的例子、抓住一些关键的词语让学生去推敲、去体会,最终引导学生完整、准确地描述出积变化的规律,并通过一些重点词的理解,使学生更加深刻地理解规律,构建起完整的认知体系。切不可因为怕耽误进度、怕麻烦、怕罗嗦而剥夺了学生说的权利,剥夺了锻炼学生思维的机会,使主导霸道地代替了主体。
《积的变化规律》是人教版教材数学四年级上册第3单元的内容。在以前计算的过程中就已经初步感悟过,但是没有总结成规律,它是在学生掌握了三位数乘两位数的计算方法的基础上进行教学的。本节课主要引导学生探索当一个因数不变时,另一个因数与积的变化情况,从中归纳出积的变化规律。通过这个过程的探索,不但让学生理解两数相乘时积的变化随其中一个因数的变化而变化,同时体会事物间是密切联系的,培养学生迁移类推的能力。
“探索规律”是数与代数领域要教学的主要内容之一。本节课的教学目标是让学生探索因数变化引起积的变化规律,感受发现数学中的规律。在教学中我引导学生通过观察、口算、计算、说理、交流等活动,归纳出积的变化规律。并会用数学语言刻画这个规律,感悟函数的思想方法。同时,让学生通过观察、比较、分析、概括、等思维活动体验归纳规律的方法,从面获得一定的价值体验。
成功之处:
1.引导学生经历规律发现的过程,让过程在孩子的经历中变得清晰。教学中要让学生充分经历规律的发现过程,把发现的过程细化、广泛化,让每个学生都参与。在起初的观察里思维灵活的学生尝试说出“两个数相乘,一个因数不变,另一个因数乘几,积也乘几”,接着引导学生理解“也”的含义,强化“一个因数不变,另一个因数和积的变化是相同的”。在这里学生的已有水平已经达到了初步认识“积的变化规律”,接下来让学生举例,深化规律。这个过程,让学生感悟到规律的得出要经过探索、猜想、验证,归纳。培养了学生各方面能力。
2.体验成功,让每个孩子都有所收获。每个孩子都期待成功,每个孩子都能成功,数学要让不同的人得到不同的发展。在教学中让每个孩子都参与在举例子的过程中,举不同的例子来验证规律,运用规律,这个过程就是学生消化知识、运用知识的过程,孩子在数学活动中得到了成功的喜悦。
3.体会快乐的同时感受数学的严谨性。数学和其他学科不同,它是一门逻辑性非常强非常讲究严谨性的学科,因此在教学中要注意特点,突出教学的严谨性。这节感受数学严谨性就是渗透在各个环节。比如发现了“两个数相乘,因数乘几,积也乘几”再让学生说说理解;老师也展示自己的想法与学生的想法产生冲突;这些都是数学严谨性的体现。
不足之处:
教学第一个规律时,呈现的材料太少,让学生一下子由初步的感悟总结提炼规律,不符合学生的认知规律。应该在初步感悟的基础上让学生尝试举例,再去总结提炼,这样既加深学生的理解,也符合认知规律。
昨天学习了四年级上册的《积的变化规律》,一步步引导学生,最后学生通过仔细观察发现:一个因数是没有变的,另一个因数乘几,然后积也乘相同的数,当时的我特别惊讶,认为这些孩子还是有一定的思考能力的,只不过需要老师在教授知识的时候让孩子们静下来去观察,去发现。但是,在让学生以此规律来举例的时候,全班学生都是举例扩大10倍的算式,我很纳闷,“难道他们就没有其他的想法吗?”,接着再次引导,想试着让他们举出不同的例子,可是,依然如初。紧接着,我通过练习题,让他们去叙述这些发现的规律,他们都很好的叙述。试着做一道解决问题“一个长方形草坪面积为200平方米,长不变,宽增加到24米,扩大后的草坪面积是多少?”结果不出所料,只有一个人看出之间的倍数关系了,另一部分同学就是利用三年级的知识把这道题给解决了。
我不解。
思考良久,他们虽然能总结出规律,但是他们却依然习惯用旧知来解决问题,对于新知,如果不会学以致用,那原因只有一个:还是没有深入理解。他可能没有搞懂为什么要去学这个知识?也就是说学这个知识能去解决什么样的问题。我在教授的时候,只注重了让他们去发现,去探索,却忘记了告诉他们我们可以用这个“规律”做什么?我们学更多的知识,就是为了解决不同种类的问题,可以让我们的生活越来越简便。