初三数学教学计划汇编七篇

马振华

初三数学教学计划 篇1

  根据学校工作安排,我担任初三年级数学,本学期教学计划如下:

  一、教学思想:

  教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括,初三数学教学计划。会用归纳演绎、类比进行简单的推理。使学生懂得数学来源于实践又反过来作用于实践。提高学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度。顽强的学习毅力和独立思考、探索的新思想。培养学生应用数学知识解决问题的能力。

  二、学生基本情况分析:

  总体来看,成绩只能算一般。在学生所学知识的掌握程度上,整个年级已经开始出现两极分化了,对优生来说,能够透彻理解知识,知识间的内在联系也较为清楚,对后进生来说,简单的基础知识还不能有效的掌握,成绩较差,学生仍然缺少大量的推理题训练,推理的思考方法与写法上均存在着一定的困难,对几何有畏难情绪,相关知识学得不很透彻。

  在学习能力上,学生课外主动获取知识的能力较差,为减轻学生的经济负担与课业负担,不提倡学生买教辅参考书,学生自主拓展知识面,向深处学习知识的能力没有得到培养。在以后的教学中,对有条件的孩子应鼓励他们买课外参考书,不一定是教辅参考书,有趣的课外数学读物更好,培养学生课外主动获取知识的能力。学生的逻辑推理、逻辑思维能力,计算能力需要得到加强,以提升学生的整体成绩,应在合适的时候补充课外知识,拓展学生的知识面,提升学生素质;在学习态度上,绝大部分学生上课能全神贯注,积极的投入到学习中去,少数几个学生对数学处于一种放弃的心态,课堂作业,大部分学生能认真完成,少数学生需要教师督促,这一少数学生也成为老师的重点牵挂对象,课堂家庭作业,学生完成的质量要打折扣;学生的学习习惯养成还不理想,预习的习惯,进行总结的习惯,自习课专心致至学习的习惯,主动纠正(考试、作业后)错误的习惯,比较多的学生不具有,需要教师的督促才能做,陶行知说:教育就是培养习惯,这是本期教学中重点予以关注的。

  三、本学期的教学内容共五章:

  第22章:二次根式;第23章:一元二次方程;第24章:图形的相似;第25章:解直角三角形;第26章:随机事件的概率。

  四、在教学过程中抓住以下几个环节:

  (1)认真备课。认真研究教材及考纲,明确教学目标,抓住重点、难点,精心设计教学过程,重视每一章节内容与前后知识的联系及其地位,重视课后反思,设计好每一节课的师生互动的细节。

  (2)抓住课堂45分钟。 严格按照教学计划,备课统一进度,统一练习,进行教学,精心设计每一节课的每一个环节,争取每节课达到教学目标,突出重点,分散难点,增大课堂容量组织学生人人参与课堂活动,使每个学生积极主动参与课堂活动,使每个学生动手、动口、动脑,及时反馈信息提高课堂效益。

  (3)课后反馈。精选适当的练习题、测试卷,及时批改作业,发现问题及时给学生面对面的指出并指导学生搞懂弄通,不留一个疑难点,让学生学有所获。

  五、不断钻研业务,提高业务能力及水平:

  积极参加业务学习,看书、看报,参加学校组织的培训,使之更好的为基础教育的改革努力,掌握新的技能、技巧,不断努力,取长补短,扬长避短,努力使教学更务实,方法更灵活,手段更先进。

  六、提高质量的措施:

  1.认真学习钻研新课标,掌握教材。

  2.认真备课,争取充分掌握学生动态。

  3.认真上好每一堂课。

  4.落实每一堂课后辅助,查漏补缺。

  5.积极与其它老师沟通,加强教研教改,提高教学水平。

  6.经常听取学生良好的合理化建议。

  7.以“两头”带“中间”战略思想不变,工作计划《初三数学教学计划》。

  8.深化两极生的训导。

初三数学教学计划 篇2

  一、内容和内容解析

  (一)内容

  一元二次方程的概念,一元二次方程的一般形式.

  (二)内容解析

  一元二次方程是方程在一元一次方程基础上 “次”的推广,同时它是解决诸多实际问题的需要,为勾股定理、相似等知识提供运算工具,是二次函数的基础.

  针对一系列实际问题,建立方程,引导学生观察这些方程的共同特点,从而归纳得出一元二次方程的概念及一般形式.在这个过程中,通过归纳具体方程的共同特点,得出一元二次方程的概念,体现了研究代数学问题的一般方法;一般形式ax2+bx+c=0也是对具体方程从“元”(未知数的个数)、“次数”和“项数”等角度进行归纳的结果;a≠0的条件是确保满足 “二次”的要求,从另一个侧面为理解一元二次方程的概念提供了契机.

  二、目标和目标解析

  (一)教学目标

  1.体会一元二次方程是刻画实际问题的重要数学模型,初步理解一元二次方程的概念;

  2.了解一元二次方程的一般形式,会将一元二次方程化成一般形式.

  (二)目标解析

  1.通过建立一元方程解决相关的实际问题,让学生体会到未知数相乘导致方程的次数升高,继而产生一元二次方程.学生能举例说明一元二次方程存在的实际背景,感受一元二次方程是重要的数学模型,体会到学习的必要性;

  2.将不同形式的一元二次方程统一为一般形式,学生从数学符号的角度,体会概括出数学模型的简洁和必要,针对“二次”规定a≠0的条件,完善一元二次方程的概念.学生能够将一元二次方程整理成一般形式,准确的说出方程的各项系数,并能确定简单的字母系数方程为一元二次方程的条件.

  三、教学问题诊断分析

  一元二次方程是学生学习的第四个方程知识,首先在初一学习了一元一次方程,接着扩展“元”得到二元一次、三元一次方程,完成了二元一次方程组的学习,初二分式的教学,使得对实际问题的刻画从整式推广到有理式,分式方程得以出现,到一元二次方程第一次实现 “次”的提升.学生必然存在着疑问,为什么有些背景列得的方程是二次的呢?教学中要直面学生的疑问,显化学生的疑问,启发学生自己解释疑问,才能避免“灌输”,体现知识存在的必要性,增强学好的信念.

  培养建模思想,进一步提升数学符号语言的应用能力, 让学生自己概括出一元二次方程的概念,得出一般形式,对初三学生是必须的,也是适可的.

  本课的.教学重点应该放在形成一元二次方程概念的过程上,不能草草给出方程的概念就反复辨析练习,在概念的理解上要下功夫.

  本课的教学难点是一元二次方程的概念.

  四、教学过程设计

  (一)创设情境,引入新知

  教师展示教科书本章的章前图,请同学们阅读章前问题,并回答:

  问题1.这个方程属于我们学过的某一类方程吗?

  师生活动:学生整理已经学过的方程类型,复习方程的概念,元与次的概念,观察新方程,分析此方程的元与次,尝试为新方程命名.

  【设计意图】使学生认识到一元二次方程是刻画某些实际问题的模型,体会学习的必要性,在学生已有的知识的体系中合理的构建一元二次方程这一新知识.

  问题2.这样的方程在其他实际问题中是否还存在呢?你能再想出一个例子吗?

  师生活动:学生思考二次项产生的原因,从熟悉的实际背景中,很有可能从矩形的面积出发,设计情境.

  【设计意图】让学生从“接受式”的学习方式中走出来,走向对一元二次方程产生的根源的探求,在编制情境的过程中,他们将加深对一元二次方程概念的理解.部分学生能够独立解决问题,自己编制情境并列出方程,部分学生可以根据同学给出的情境去列方程,或者阅读课本上的实际问题.

  (二)拓宽情境,概括概念

  给出课本问题1、问题2的两个实际问题,设未知数,建立方程.

  问题1 如图21.1-1,有一块矩形铁皮,长100 cm,宽50 cm.在它的四个角各切去一个同样的正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积是3 600 cm2,那么铁皮各角应切去多大的正方形?

  个队参赛,则每个队要与其他____个队各赛一场,全部比赛共有___ 场.

  由此,我们可以列出方程______________,化简得________________.

  问题3. 这些方程是几元几次方程?

  师生活动:学生将实际问题中的语言转化成数学的符号语言,体会运算关系,寻找等量关系,学习建模.将列得的方程化简整理,判断出方程的次数.

  【设计意图】在建模的过程中不仅加强学生的数学思维能力,而且对二次项产生的根源将更加明晰,加深对一元二次方程的理解.让学生回答方程的元与次,一是让他们体会统一成一般形式的必要性,为概念的形成做铺垫,分解教学的难点;二是让他们明确教学的主线,从被动学习走向主动学习.

  问题4.这些方程是什么方程?

  师生活动:观察本课得出的一些方程,思考它们的共性,同学们尝试给出一元二次方程的定义,并且概括出一元二次方程的一般形式.

  1.一元二次方程的概念:

  等号两边都是整式,只含有一个未知数,并且未知数的最高次数是2(二次)的方程叫做一元二次方程.

  2.一元二次方程的一般形式是

  是二次项,a是二次项系数;

  开发学生认识的资源,激发学生从不同角度、不同形式去深入理解同一概念,让不同的学生在此过程中获得不同的收获,实现分层教学分层指导的效果.

  问题6. 下列方程哪些是一元二次方程?

  例1.下列方程哪些是一元二次方程?

  (1)

  ;

  (3)

  ;

  (5)

  .

  答案(2)(5)(6).

  师生活动:用概念指导辨析,方程(3)与(4)同学们可能会产生争议,(3)帮助学生明确一元二次方程是整式方程,(4)体会化为一般形式的必要性,对a≠0条件加深认识.

  【设计意图】补足学生所举正反例的缺漏,追问:有二次项的一元方程就是一元二次方程吗?帮助学生进一步巩固概念,深化对一元、二次的认识.

  问题7.指出下列方程的二次项、一次项和常数项及它们的系数.

  例2. 将下列方程化为一般形式,并分别指出它们的二次项、一次项和常数项及它们的系数:

  (1)

  师生活动: (1)将方程

  ,移项,合并同类项得:

  ,二次项系数是3;一次项是

  ,常数项是

  ,过程略.

  例3.关于x的方程

  时此方程为一元二次方程;

  时此方程为一元一次方程.

  【设计意图】在形式比较复杂的方程面前,通过辨析方程的元、次、项看清方程的本质,深化理解,淡化对一元二次方程概念的记忆.

  (四)巩固概念,学以致用

  教科书第4页: 练习

  【设计意图】巩固性练习,同时检验一元二次方程概念的掌握情况.

  (五)归纳小结,反思提高

  请学生总结今天这节课所学内容,通过对比之前所学其它方程,谈对一元二次方程概念的认识,反思学习过程中的典型错误.

  (六)布置作业:教科书习题21.1

  复习巩固:第1,2,3题.

  五、目标检测设计

  1.下列方程哪些是关于x的一元二次方程

  (1)

  ;(3)

  .

  【设计意图】考查对一元二次方程概念的理解.

  2.关于

  是一元二次方程,则( ).

  A.

  C.

  【设计意图】考查

  的一元二次方程

初三数学教学计划 篇3

  圆周角最初叫詹妮特角(Jeanit),因为它的顶点在圆周上,于是就将其更名为圆周角。接下来我们一起来看看初三数学圆周角教学计划模板。

  课题圆周角课 型新授第( 2 )课时

  知识与技能.知识与技能:掌握直径(或半圆)所对的圆周角是直角及90°的圆周角所对的弦是直径的性质,并能运用此性质解决问题

  过程与方法经历圆周角性质的过程,培养学生分析问题和解决问题的能力

  情感态度与价值观 激发学生探索新知的兴趣,培养刻苦学习的精神,进一步体会数学源于生活并用于生活.

  教材分析教学重点圆周角的性质学习

  教学难点圆周角性质的应用

  相关准备课件

  教学程序及教学内容二级备课

  过程教师活动学生活动

  1.如图,在⊙O中,△ABC是

  等边三角形,AD是直径,

  则∠ADB= °,∠DAB= °.

  2. 如图,AB是⊙O的直径,若AB=AC,求证:BD=CD.

  第2题

  1.如图,点A、B、C、D在⊙O上,若∠BAC=40°,则

  (1)∠BOC= °,理由是 ;

  (

  第1题

  2.如图,在△ABC中,OA=OB=OC,则∠ACB= °.知知识梳理

  1.两条性质:

  教师活动学生活动二级备课

  一、小组交流、生生互动:

  1)这里所对的角、90°的角必须是圆周角;

  (2)直径所对的圆周角是直角,在圆的有关问题中经常遇到,同学们要高度重

  二、师生互动、归纳点拨:

  如图, A、B、E、C四点都在⊙O上,AD是△ABC的高,∠CAD

  =∠EAB,AE是⊙O的直径吗?为什么?

  【解析】 利用 90°的圆周角所对的弦是直径.

  如

  1.如图,BC是⊙O的直径,它所对的圆周角是锐角、钝角,还是直角?为什么?

  (引导学生探究问题的解法)

  2.如图,在⊙O中,圆周角∠BAC=90°,弦BC经过圆心吗?为什么?

  强调辅助线

  教师活动学生活动二级备课

  三、课堂诊断:

  例题1.如图,AB是⊙O的直径,弦CD与AB相交于点E,∠ACD=60°,

  ∠ADC=50°,求∠CEB的度数.

  【解析】利用直径所对的圆周角是直角的性质

  如图,点A、B、C、D在圆上,AB=8,BC=6,AC=10,CD=4.求AD的长.

  如图,△ABC的顶点都在⊙O上,AD是△ABC的高,AE是⊙O的直径.△ABE与△ACD相似吗?为什么?

  针对本节容量大且内容重要的特点,我采取分散知识点,进行分小节学习反馈:

  一:圆周角的定义:采取先让学生自学然后屏幕出示图形让生判断,以反馈学生自学情况;

  二:直径所对的圆周角是90度及其逆定理:这一部分仍然采取先让学生自学,然后教师提问反馈,同时出示一些针对性练习题让生上台展示,做到学以致用,同时暴露问题为教师点拨释疑打下铺垫。

  三:同圆或等圆中圆周角的共性:(1)同弧或等弧所对的圆周角相等(2)一条弧所对的圆周角等于它所对圆心角的一半(3)这一部分内容较多,但学生可以跟随书本按照度量猜想-------分类验证------得出结论的逻辑顺序,最终形成圆周角性质的归纳概括。最后教师出示一些关于圆周角共性应用的习题,以加深巩固这一部分的知识。

  按照以上的设计思路,这节课基本达到了预期目的:学生认识了圆周角,能掌握圆周角的性质,能用定义和性质解决一些简单问题。

初三数学教学计划 篇4

  一、教学内容

  本章较为系统的研究成比例线段、相似图形、相似三角形、中位线、位似图形、图形与坐标等,探索并体验相似在现实生活中的广泛应用。本章是继图形的全等之后集中研究图形形状的内容,是对图形全等知识的

  进一步拓展和发展。整个设计力图引导学生观察、分析生活现实和教学现实的相似现象,总结图形相似的有关特征并自觉应用到现实之中。同时,通过“相似图形”进一步丰富学生的教学活动经验,有意识的培养学生积极的情感态度,认识教学丰富的人文价值,促进学生观察、分析、归纳、概括等一般能力和审美意识的发展。

  二、教学目标

  1、通过生活中的实际认识物体和图形的相似,知道相似与轴对称、平移、旋转一样,也是图形之间的一种变换。

  2.探索并确认相似图形的性质,知道相似多边形的对应角相等,对应边成比例以及面积比的关系。

  3.了解线段的比、成比例线段的概念,比例的基本性质,会判断以知线段是否成比例。

  4.了解相似三角形的概念,探索两个三角形相似的条件及其主要性质。

  5.能利用相似三角形的性质解决一些简单的实际问题。

  6.了解图形的位似,能利用位似的方法将一个图形放大或缩小。

  7.了解三角形和梯形的中位线定理、三角形重心的概念以及有关应用。

  8.能建立适当的坐标系,描述物体的位置.能灵活运用不同的方式确定物体的位置。

  9.在同一直角坐标系中,感受图形变换后点的坐标的变化。

  10.在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,进一步培养学生的演绎推理能力。

  三、教学重点难点

  1、教学重点:成比例线段、相似三角形和相似多边形的性质和判定,位似图形的概念和作法。

  2、教学难点:利用性质和判定分析和解决问题。

  3、教学关键:成比例线段、相似三角形的性质和判定。

  四、教学策略

  1、采用引导发现法培养学生类比推理能力;采用尝试指导法,逐步培养学生独立思考的能力及语言表达能力.充分发挥学生的主体作用,使学生在轻松愉快的气氛中掌握知识.

  2、让学生充分发表自己的见解,给学生一定的时间和空间自主探索每一个问题,而不是急于告诉学生结论。

  3、充分发挥小组合作,多开展讨论交流,让学生自己找到答案。

初三数学教学计划 篇5

  一、教材分析

  第十一章全等三角形本章主要学习全等三角形的性质与判定方法,学习应用全等三角形的性质与判定解决实际问题的思维方式。教学重点:全等三角形性质与判定方法及其应用;掌握综合法证明的格式。教学难点:领会证明的分析思路、学会运用综合法证明的格式。教学关键提示:突出全等三角形的判定。

  第十二章轴对称本章主要学习轴对称及其基本性质,同时利用轴对称变换,探究等腰三角形和正三角形的性质。教学重点:轴对称的性质与应用,等腰三角形、正三角形的性质与判定。教学难点:轴对称性质的应用。教学关键提示:突出分析问题的思维方式。

  第十三章实数本章通过对平方根、立方根的探究引出无限不循环小数,进而导出无理数的概念,从而把有理数扩展到实数。教学重点:平方根、立方根、无理数和实数的有关概念与性质。教学难点:平方根及其性质;有理数、无理数的区别。教学关键提示:从生活实际入手,让学生经历无理数的发现过程,从而理解并掌握实数的有关概念与性质。

  第十四章一次函数本章主要学习函数及其三种表达方式,学习正比例函数、一次函数的概念、图象、性质和应用,并从函数的观点出发再次认识一元一次方程、一元一次不等式及二元一次方程组。教学重点:理解正比例函数、一次函数的概念、图象和性质。教学难点:培养学生初步形成数形结合的思维模式。教学关键提示:应用变化与对应的思想分析函数问题,建立运用函数的数学模型。

  第十五章整式的乘除与因式分解本章主要学习整式的乘除运算和乘法公式,学习对多项式进行因式分解。教学重点:整式的乘除运算以及因式分解。教学难点:对多项式进行因式分解及其思路。教学关键提示:引导学生运用类比的思想理解因式分解,并理解因式分解与整式乘法的互逆性。

  二、学生情况分析

  初三是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。有少数同学基础特差,问题较严重。要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生学习主体作用,注重方法,培养能力。上学年学生期末考试的成绩平均分为116分,不及格的学生仅有7人。总体来看,成绩还算不错。九年级尚未出现两极分化,绝大多数学生都在认真学习。本学期还要在学生学习习惯的养成上,在学生学习主动性上下大功夫。

  三、教学目标

  1、知识与技能目标学生通过探究实际问题,认识全等三角形、轴对称、实数、一次函数、整式乘除和因式分解,掌握有关规律、概念、性质和定理,并能进行简单的应用。进一步提高必要的运算技能和作图技能,提高应用数学语言的应用能力,通过一次函数的学习初步建立数形结合的思维模式。

  2、过程与方法目标掌握提取实际问题中的数学信息的能力,并用有关的代数和几何知识表达数量之间的相互关系;通过探究全等三角形的判定、轴对称性质进一步培养学生的识图能力;通过探究一次函数图象与性质之间的关系,初步建立数形结合的数学模式;通过对整式乘除和因式分解的探究,培养学生发现规律和总结规律的能力,建立数学类比思想。

  3、情感与态度目标通过对数学知识的探究,进一步认识数学与生活的密切联系,明确学习数学的意义,并用数学知识去解决实际问题,获得成功的体验,树立学好数学的信心。体会到数学是解决实际问题的重要工具,了解数学对促进社会进步和发展的重要作用。认识数学学习是一个充满观察、实践、探究、归纳、类比、推理和创造性的过程。养成独立思考和合作交流相结合的良好思维品质。了解我国数学家的杰出贡献,增强民族的自豪感,增强爱国主义。

初三数学教学计划 篇6

  本学期我担任初三数学教学,为了更好的提高教学知识质量,提高学生的学习数学的技能,特制定本学期教学计划如下:

  一、教学目标:

  1、教育学生掌握基础知识与基本技能;培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理。使学生懂得数学来源于实践又反过来作用于实践。提高学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度。顽强的学习毅力和独立思考、探索的新思想。培养学生应用数学知识解决问题的能力。

  2、培养学生良好的数学学习习惯,在班级营造良好的学习氛围,调动大多数学生的学习积极性,提高整体的数学素质,从而提高平均分。期末平均分提高五分以上,让每个学生都有不同程度的提高。

  3、辅导学困生,对一些有潜力进步,但由于各种原因成绩教差的学生,给予充分关注,调动学习积极性,使成绩尽快提高。

  二、教学措施

  1、尽快了解学生,融洽师生关系,消除学生逆反心理,进入正常的学习状态,建立良好的学习氛围,提高学生的学习热情。

  2、认真备课。认真研究教材及考纲,明确教学目标,抓住重点、难点,精心设计教学过程,重视每一章节内容与前后知识的联系及其地位,重视课后反思,设计好每一节课的师生互动的细节。提高课堂效率,向课堂45分钟要效率。深入挖掘教材、把握重点难点、关键,争取在课堂上消化知识,这也是提高学生学习兴趣的最主要途径。

  3、多研究教学改革、多参加听评课活动,多学习,不断在教学实践中总结教学经验,提高自己的教学能力。

  4、作好常规教学,及时批改作业,及时复习,及时反馈,及时了解学生的学习状态,采取相应的措施。不让每一名学生放弃数学。不让每一名学生放松学习,经常使用鼓励性语言,建立融洽的师生关系。

  5、组织学困生的辅导。课堂上多进行提问 ,多与学生沟通,调动他们的积极性,发挥他们的潜力,增强学习信心。

  三、其它方面

  在认真完成本职工作的同时,以饱满的热情参加学校组织的各种活动,同时制订合理的计划,为下学期全面迎接毕业考试和升学做好准备。

初三数学教学计划 篇7

  本学期是初中学习的关键时期,教学任务非常艰巨。九年级毕业班总复习教学时间紧,任务重,要求高,如何提高数学总复习的质量和效益,是每位毕业班数学教师必须面对的问题。九年级下学期的复习教学,是整合升华学科知识、培养提高应试能力的重要环节。复习教学工作的好坏,直接关系到中考的成功与否。为保障毕业班复习教学取得良好成效,奠定今年中考胜利的基础,结合本班学生实际,对九年级复习教学工作制定以下计划。

  一、 指导思想

  以复习课型模式研究,提高课堂效益为重点,面向全体学生,优生优培,中等生提高,困难生稳中求进;依纲据本,抓住重点,突破难点,强化薄弱环节;加强教情、学情研究,强化中考的研究,大面积提高教学成绩,促进九年级复习教学工作又好又快发展。

  二、主要工作及要求、措施

  1、周密计划,科学安排

  本学期完成教学进度后,即转入总复习阶段。总体时间安排是开学—4月中旬为第一轮复习,以课本知识的疏理、归纳、总结为主;4月下旬—5月中旬30天左右,以课外拓展为主,5月下旬—6月中考前,主要是整合升华阶段,训练应试能力与技巧。

  三轮复习的具体思路是:

  一轮复习本着全面、扎实、系统、灵活的指导思想,一是做到“四个坚持”,即:坚持把复习的重点放在基础知识上;坚持补弱纠偏,重在一轮;坚持改进课堂教学,提高复习效率;坚持面向全体,实现大面积丰收。二是落实“四个为主”,即以基础知识的复习为主,以低中档题目的训练为主,以学科内综合为主,以小综合训练为主。三是处理好“三个关系”,即:基础和能力的关系(强化基础,提升能力),扬长与补弱的关系,复习知识与做题的关系(做题的目的是回扣知识提升能力)。四是确保两项常规的落实,即教师的教学常规和学生学习常规的落实。

  二轮复习本着“巩固、完善、综合、提高”的指导思想,采取“专题复习加综合训练”的复习模式,突出“五个强化”,即①强化时间观念;②强化研究:③强化训练:④强化应试技巧与规范化,最大限度降低非知识性丢分;⑤强化学生心理调控,加强心理辅导,使学生以一种积极的心态复习,以必胜的信念参加中考。

  三轮复习以“回扣、模拟、完善、调整”为指导思想。抓回扣做到“四化要求”,即:回扣教材提纲化、回扣基础系统化、回扣形式习题化、回扣时间具体化;抓模拟做到“四性要求”,即试题体现基础性,考试体现模拟性,答题体现规范性,讲解体现系统性。逐步达到完善知识体系,适应考试要求、调整教与学的方向、升华应试技能的目的。

  3、细致研究教材、考试说明、中考试题,做到有的放矢。

  《考试说明》或学科新课程标准,是中考命题的基本依据。今年中考改革力度大,研究透彻《中考说明》及有关学科课程标准,是获取中考信息的捷径,是提高教学效益的关键。教师要明白并教学生明白中考内容的范围及试题结构,搞清“考什么,怎么考”的问题。 密切注意中考动向,注重中考信息的搜集与整理,保持与教研室、中考改革先进县区、兄弟学校的密切联系,提高应试指导的科学性、时效性。

  4、组织好大型考试,搞好质量分析

  综合拉练、模拟考试,要做到考务严密,分析透彻,补漏措施具体,使每一次考试成为学生学习的加油站,教师教学的里程碑,教学质量的大会诊。

  5、重视非智力因素培养,加强学法指导

  要从只重视学生的智力因素转移到重视智力因素与非智力因素协调发展上来,特别应突出对学生学习兴趣与动力激发、学习习惯与品质养成、理想教育与成功教育等方面的研究和强化。要系统有序地教给学生本学科的学习方法,并注意跟上个别指导。

  6、因材施教,加强学生的分层次教育。

  切实贯彻“优生优培,中间生提高,困难生稳中求进”的原则。要增强优生优培意识,调整优生优培策略,要特别关注第一名,将其作为重点中的重点悉心培养。在课堂提问、试卷批阅等环节要注意对中程生倾斜,使其尽快优化,以提高平均分,增加其升入高中的机会。对学习困难生,更要多一份耐心,要想方设法鼓舞其信心,利用复习的机会掌握一些基本知识,提高平均分,顺利完成学业,以此提升平均分。

  教学计划安排:

  第一~二周 新授: 圆,统计与概率初步。

  第三周 基础知识复习数与式。

  第四周 方程与不等式。

  第五~六周 函数。

  第七~八周 图形的初步认识与三角形、四边形。

  第九周 圆。

  第十周 图形与变换、统计与概率。

  第十一周 知识的拓展复习。

  第十二周 针对专题复习(数学思想方法专题、规律与猜想专题、阅读理解专题、决策与应用专题、操作探究专题、探索与证明专题、图形与运动专题)

  第十三周~中考 回扣教材,针对不同的学生存在的问题查漏补缺,回归基础知识复习,强化基础知识应用