2021小学一年级数学下册教案1
教学目标
1.理解比和比例的意义及性质.
2.理解比例尺的含义.
教学重点
整理比和比例、求比值及比例尺.
教学难点
正、反比例概念和判断及应用.
教学步骤
一、基本训练.
43-27
5.65+0.5 4.80.4 1.25 1001%
0.25402-
二、归纳整理.
(一)比和比例的意义及性质.
1.回忆所学知识,填写表格【演示课件比和比例】
2.分组讨论:
比和分数、除法有什么联系?
比的基本性质有什么作用?比例的基本性质呢?
3.总结几种比的化简方法.【继续演示课件比和比例】
比
前项
∶(比号)
后项
比值
除法
分数
(1)整数比化简,比的前项和后项同时除以它们的最大公约数.
(2)小数比化简,一般是把前项、后项的小数点向右移动相同的位数(位数不够补零),使它成为整数比,再用第一种方法化简.
(3)分数比化简,一般先把比的前项、后项同时乘上分母的最小公倍数,使它成为整数比,再用第一种方法化简.
(4)用求比值的方法化简,求出比值后再写成比的形式.
解比例:12 :x=8 :2
4.巩固练习.
(1)李师傅昨天6小时做了72个零件,今天8小时做了96个零件.写出李师傅昨天和今天所做零件个数的比和所用时间的比.这两个比能组成比例吗?为什么?
(2)甲数除以乙数的商是1.4,甲数和乙数的比是多少?
(3)解比例: ∶ =8∶2
2021小学一年级数学下册教案2
【教学内容】
教科书第25页例4及课堂活动。
【教学目标】
1.让学生在实践活动中认识长度单位“毫米”,初步建立1毫米的概念,感知1毫米有多长,知道1厘米=10毫米。
2.让学生通过整理,对相邻两个长度单位之间的进率有系统、完整的认识。
3.结合实践活动,渗透长度单位源于实践又应用于实践的观点,同时培养学生的实际操作能力及空间概念。
【教学准备】
多媒体、硬币、学生直尺、身份证、彩条等。
【教学过程】
一、创设情景,导入新课
媒体展示:美丽的七色彩虹。
教师:多美的七色彩虹呀!在各小组的桌上有和彩虹一样漂亮的七彩纸条,请各小组分工合作量出它的长度有多少厘米,并作记录。
学生汇报后,发现紫色彩条的长度有争议。
教师:用厘米作为长度单位测量,有时得不到准确的结果,需要一个比厘米还小的单位——毫米。(板书:毫米)
二、探索新知识
1.观察直尺,看1厘米中间有些什么
(1)看一看,直尺上1厘米中间有些什么?
(2)找一找,直尺上有哪些长度单位,你是怎样发现的?教师小结:直尺上除了厘米刻度外,还有更小的小格,1厘米间的每一小格的长度就是1毫米。教师媒体展示——毫米。强调:毫米是比厘米小的长度单位。
(3)指一指:用笔头指一指1毫米,看一看1毫米有多长。(要求学生多指几处)
(4)数一数:1厘米中间有多少个1毫米。
(学生汇报时,要求学生说出数的是从几厘米到几厘米,中间有多少小格)
根据学生汇报,引导分析、概括出1厘米=10毫米。
练习:2厘米=( )毫米8厘米=( )毫米( )厘米=50毫米60毫米=( )厘米
(5)介绍字母表示毫米。
提问:千米用什么字母表示?米呢?厘米呢?猜一猜,毫米用什么字母表示?
教师指出:国际上规定用“mm”表示毫米,1毫米可以写成1 mm,那么1厘米=10毫米可以写成1 cm=10 mm。(板书写出)
尝试:你能用字母表示2毫米、3毫米、7毫米、10毫米、43毫米吗?
学生独立尝试,全班展示。
2.实践活动,感受1毫米的长度
(1)猜一猜,桌上什么物体的厚度大约是1毫米?
(2)量一量,身份证的厚度究竟是不是1毫米?
(3)用手势表示1毫米的长度。
教师示范:用拇指和食指拿身份证,然后抽出身份证,指出两指间的缝隙就是1毫米。要求学生反复练习,体验1毫米的长度。
(4)说一说:桌上还有什么东西的厚度是1毫米?
(5)想一想:生活中你见过哪些物体的厚度是1毫米?
3.实际操作,用毫米作单位测量
(1)认一认,媒体出示练习十三中第2题的两幅图,引导学生认一认是多少毫米。
(2)尝试量一量。
①媒体显示两种量曲别针的测量方法,哪种正确?并要求学生说明理由。
②尝试量紫色彩带的实际长度和量数学课本的厚度。
③开放测量,找合作伙伴一起,对周围物体作随意测量,看是多少毫米。
4.探究相邻长度单位之间的进率
议一议:我们学过的长度单位有哪些?相邻两个单位之间的进率是多少?
学生小组讨论交流,然后全组汇报,教师引导学生整理。
1km=1000m 1m=10dm=100cm=1000mm
通过整理,引导学生探究:除km和m间的进率是1000以外,其他相邻两个长度单位的进率是10。
二、用新知,解决问题
1.做教科书第26页课堂活动第1题让学生独立思考,再全班交流,然后选择合适的单位填入括号中。
2.学生独立完成课堂活动第2题教师提醒学生用mm为长度单位,引导学生认识其测量误差。
3.指导学生做课堂活动第3题先估计100张纸的厚度,再实际量一量,并做好记录。
4.铅笔的长可能是几厘米?
三、课堂总结
这节课,我们学习了什么?你应用了哪些方法探究毫米的有关问题?
教学反思:
2021小学一年级数学下册教案3
教学目标
1.通过复习,使学生进一步认识学过的一些立体图形的特征,掌握不同立体图形之间的异同.
2.通过复习,使学生能够灵活运用所学过的立体图形的特征解决简单的实际问题.
3.进一步发展学生的空间观念.
教学重点
1.通过复习,使学生能够灵活运用所学过的立体图形的特征解决简单的实际问题.
2.进一步发展学生的空间观念.
教学难点
进一步发展学生的空间观念.
教学过程
一、谈话导入.
我们已经复习了平面图形的相关知识,从今天开始,复习立体图形的知识.这节课,复习立体图形的特征.(板书课题)
二、复习立体图形的基本特征.
提问:我们学习过哪些立体图形?谁来拿出不同的立体形体,告诉大家各是什么名称.
出示立体图形
请你分别说一说每个立体图形的名称及各部分的名称.
(圆锥体、长方体、正方体、圆柱体和长方体)
它们有什么特征呢?我们先来复习长方体的特征.
(一)复习长方体的特征.【演示课件立体图形的认识】
出示长方体:
1.同学以组为单位一起回忆.
a.长方体的特征.
b.想一想你是从那几方面对长方体的特征进行总结的.
2021小学一年级数学下册教案4
教学目标
1、了解算术型计算器表面各按键的功能。
2、了解算术型计算器工作的基本过程。
3、掌握算术型计算器的使用方法。
4、培养学生动手操作能力。
教学建议
教材分析
电子计算器的认识和使用是本册书新增加的内容。随着现代科学技术日新月异,高速发展,随之而来的是现代化的教学技术和手段层出不穷,因此计算机、计算器这些新时代的高科技产品进入课堂是历史的必然。计算器的一个基本特点是计算迅速准确,使用计算器,可以把学生从烦琐的数字计算中解脱出来,这样既减轻了中年级学生的课业负担,又能使学生有更多的时间进行思考、动手操作和实践活动,有利于开发学生的数学灵感,提高数学学习的兴趣,促进学生智力和能力的发展。
电子计算器的使用包括两部分内容。第一部分是认识和使用方法。由于大部分学生已经接触过计算器,因此教材只通过一幅计算器的外型 结构图,逐渐让学生了解计算器的键盘结构(数字键,四则运算键,清除数字键),同时通过一些简单的练习题,使学生学会这些按键的使用方法。第二部分是计算器的具体应用。教材一共安排了三个例题,例1是一步的四则运算,例2是两步的四则混合运算,例3是带有括号的四则混合运算。这三个例题由浅入深,由易到难。教师在实际教学时,一定要让学生具体实践操作,逐步掌握,而不是仅仅由教师告诉学生操作步骤和结论,让学生记住。这不是把简单问题复杂化,而是让学生经历知识形成的过程。
教法建议
由于大部分学生已经接触过计算器,并对其有了初步的认识,所以适合采用尝试法或者实验法。在教学计算器的认识这部分知识时,应该让学生提前准备好计算器,通过尝试,逐渐掌握数字键、四则运算键、清除数字键,等等。接着,可以让学生自己演算例1,订正时要强调数字的输入方式(先输入高位数字),然后组织学生分小组互相出题练习。教学例2时,要注意与例1对比。例1是一步的四则运算,例2是两步的四则混合运算,在使用计算器过程中实际上是利用了交换律,所以在用计算器进行四则混合运算时,要根据四则运算的顺序调整按键顺序,分布进行运算。教学例3时,可以分为四步:第一步观察:例3和例2的主要区别是什么?第二步思考:还能不能利用交换律运算?第三步验证结论:到底行不行?第四步考虑方法:怎么办?需要应用什么按键?通过引导学生思考,使学生明白清除数字键的作用,并学会应用。
2021小学一年级数学下册教案5
教材分析:质数和合数,是在约数和倍数以及能被2、3、5整除的数的特征的基础上进行教学的。质数和合数是求最大公约数、最小公倍数以约分、通分的基础。因此这部分内容的教学不仅要使学生掌握质数、合数的概念,而且能较快地看出常见数是质数还是合数。
教学内容:九年义务教育六年制小学教科书第58页、第59页上半页的内容及练习十三中的1~4题。
教学目的:
1、使学生掌握质数和合数的概念,知道它们的联系和区别。
2、能正确判断一个数是质数还是合数。
3、培养学生判断推理能力。
教学重点:掌握质数、合数概念,会判断一个数是质数还是合数。
教学难点:判断一个数是质数还是合数。
教学关键:使学生把握住质数和合数的根本区别在于:质数,只有1和本身二个约数;合数,除了1和本身,还有其它约数。
教具准备:纸片、投影器、投影片等。
教学过程:
一、复习。
师:“我们学过求过一个数的约数,那么每个数的约数的个数又有什么规律呢?这节课我们来探索这个问题。”
师:“谁能说说什么是约数?”
生:“如果数a能被数b(b不等于0)整除,a就叫做b的倍数,b就做a的约数(或a的因数)。
师:“谁又能说说每个数的约数有什么特点?”
生:“一个数的约数的个数是有限的.,其中最小的约数是1,最大的约数是它本身。”
二、教学新课。
1、教学例1。
教师出示例1(纸片)时说:“请两名学生分别写出左右两排数的约数。”点两名学生上黑板完成例1。
例1 写出下面每个数的所有的约数。
1的约数:1 7的约数:1、7
2的约数:1、2 8的约数:1、2、4、8
3的约数:1、3 9的约数:1、3、9
4的约数:1、2、4 10的约数:1、2、5、10
5的约数:1、5 11的约数:1、11
6的约数:1、2、3、6 12的约数:1、2、3、4、 6、12
师:“谁能根据这些数的约数的个数进行分类?”教师在黑板上板书:
有一个约数的是:(生)1
有两个约数的是:(生)2、3、5、7、11
有两个以上约数的是:(生)4、6、8、9、10、12
请一名学生上黑板进行分类,其余学生在书上完成。
师:“一个数,如果只有1和它本身两个约数,这样的数叫质数(或素数)(张贴质数概念)。例如,2、3、5、7、11都是质数。谁能说说,还有哪些数是质数?”
生:“13、17、19、23……”
师:“质数的个数数得完吗?”
生:“数不完,质数的个数有无数个?”
师:“一个数,如果除了1和它本身还有别的约数,这样的数叫做合数(张贴合数概念)。例如,4、6、8、9、10、12都是合数。谁能说说,还有哪些数是合数?”
生:“4、6、8、100……”
师:“合数的个数数得完吗?”
生:“合数的个数数不完,它的个数有无数个。”
师:“1不是质数,也不是合数(张贴概念)。”
2、教学例2
师:“根据质数和合数的定义,我们可以判断一个数是质数还是合数。请看例题。”
投影:
判断下面各数,哪些是质数,哪些是合数。
17 22 29 35 37 87
质数有:(生)17、29、37
合数有:(生)22、35、87
师:“根据质数和合数的定义,质数只有1和它本身两个约数,合数除了1和它本身外,还有别的约数,请某某同学上来找出所有的质数,并把答案填在投影片上。”
学生填完后,师:“请你说说是怎样想的。”
生1:“17、29、37是质数。因为17只有1和17两个约数,29只有1和29两个约数,37只有1和37两个约数。”
师:“请某某同学上来找出所有的合数,并把答案填在投影片上。”学生填完后,
师:“请你说说是怎样想的。”
生2:“22、35、87是合数。因为22除了1和22两个约数外,还有2、11两个约数,35除了1和35两个约数外,还有5、7两个约数,87除了1和87两个约数外,还有3、29两个约数。”
师:“这两位同学回答得很好,老师相信大家都能够判断一个数是质数,还是合数了。下面请同学在书上第59面完成中间的做一做。”
投影:
下面哪些数是质数,哪些是合数?
19 21 43 67
质数:(生)19、43、67
合数:(生) 21
请两名学生在投影片上分别写出答案,并请学生说说怎样想的。
师:“请同学们做一做,20以内的数中,有哪些数是质数。”
学生自己动手制出20以内质数表。
师:“如果给我们一个数,如87,我们怎样知道这些数只有1和它本身两个约数,是个质数呢?”
生:“我们可以用2、3、5、7、9……去除这个数,如果这个数不能被2、3、5、7、9……这些数整除,就说明这个数只有1和它本身两个约数,那么它就是一个质数。”
师:“这位同学回答得非常好,判断一个数是不是质数,我们通常可以用2、3、5、7、9、11……这些数除这个数,如果都不能整除,就说明这个数是质数。”
三、巩固练习。
师:“下面我们一起来做几个练习,请看屏幕。”
投影:题一
检查下面各数的约数的个数,指出哪些是质数,哪些是合数,分别填在指定的圈里。
27 37 41 51 57 69 83 87
质数 合数
投影:题二
在自然数1~20中:
奇数有: 偶数有:
质数有: 合数有:
投影:题三
下面的判断对吗?说出理由。
(1)所有的奇数都是质数。
(2)所有的偶数都是合数。
(3)在自然数中,除了质数以外都是合数。
(4)1既不是质数,也不是合数。
四、引导小结,板书课题。
师:“请同学回顾一下,这节课我们学习了什么知识?”
生:“学习了质数、合数的定义;知道了1既不是质数,也不是合数;学会了判断一个数是质数还是合数。”
师:“今天,我们学习的知识的课题就是……(板书课题:质数和合数)。”
五、布置作业。
师:“请同学们从课本第62面的第1题中的99数中,先划掉2的倍数,再依次划掉3、5、7的倍数(但2、3、5、7本身不划掉),自己动手制作100以内的质数表。做完以后与第59面中间的质数表对照一下,看谁能够一气呵成,制出100以内的质数表。我们今天到此为止,下课!”
六、简评。