三年级数学奥数教案最新模板1
1.一桶水,第一次倒出一半,然后倒回桶里30千克,第二次倒出桶中剩下水的一半,第三次倒出180千克,桶中还剩下80千克.桶里原来有水多少千克?
180+80=260(千克),260×2-30=490(千克),490×2=980(千克).
2.甲、乙两书架共有图书200本,甲书架的图书数比乙书架的3倍少16本.甲、乙两书架上各有图书多少本?
答案:乙:(200+16)÷(3+1)=54(本);甲:54×3-16=146(本).
3.小燕买一套衣服用去185元,问上衣和裤子各多少元?
裤子:(185-5)÷(2+1)=60(元);
上衣:60×2+5=125(元).
4.甲、乙、丙三人年龄之和是94岁,且甲的2倍比丙多5岁,乙2倍比丙多19岁,问:甲、乙、丙三人各多大?
如果每个人的年龄都扩大到2倍,那么三人年龄的和是94×2=188.如果甲再减少5岁,乙再减少19岁,那么三人的年龄的和是188-5-19=164(岁),这时甲的年龄是丙的一半,即丙的年龄是甲的两倍.同样,这时丙的年龄也是乙两倍.所以这时甲、乙的年龄都是164÷(1+1+2)=41(岁),即原来丙的年龄是41岁.甲原来的年龄是(41+5)÷2=23(岁),乙原来的年龄是(41+19)÷2=30(岁).
5.小明、小华捉完鱼.小明说:“如果你把你捉的鱼给我1条,我的鱼就是你的2倍.如果我给你1条,咱们就一样多了.“请算出两个各捉了多少条鱼.
小明比小华多1×2=2(条).如果小华给小明1条鱼,那么小明比小华多2+1×2=4(条),这时小华有鱼4÷(2-1)=4(条).原来小华有鱼4+1=5(条),原来小明有鱼5+2=7(条).
6.小芳去文具店买了13本语文书,8本算术书,共用去10元.已知6本语文本的价钱与4本算术本的价钱相等.问:1本语文本、1本算术本各多少钱?
8÷4×6=12,即8本算术本与12本语文体价钱相等.所以1本语文本值10×100÷(13+12)=40(分),1本算术本值40×6÷4=60(分),即1本语文本4角,1本算术本6角.
7.找规律,在括号内填入适当的数. 75,3,74,3,73,3,(),().
答案:72,3.
8找规律,在括号内填入适当的数. 1,4,5,4,9,4,(),().
奇数项构成数列1,5,9……,每一项比前一项多4;偶数项都是4,所以应填13,4
9.找规律,在括号内填入适当的数. 3,2,6,2,12,2,(),().24,2.
10.找规律,在括号内填入适当的数. 76,2,75,3,74,4,(),().
答案:将原数列拆分成两列,应填:73,5.
三年级数学奥数教案最新模板2
1.一条路长100米,从头到尾每隔10米栽1棵梧桐树,共栽多少棵树?
路分成100÷10=10段,共栽树10+1=11棵.
12棵柳树排成一排,在每两棵柳树中间种3棵桃树,共种多少棵桃树?
3×(12-1)=33棵.
一根200厘米长的木条,要锯成10厘米长的小段,需要锯几次?
200÷10=20段,20-1=19次.
4.蚂蚁爬树枝,每上一节需要10秒钟,从第一节爬到第13节需要多少分钟?
从第一节到第13节需10×(13-1)=120秒,120÷60=2分.
5.在花圃的周围方式菊花,每隔1米放1盆花.花圃周围共20米长.需放多少盆菊花?
20÷1×1=20盆
6.从发电厂到闹市区一共有250根电线杆,每相邻两根电线杆之间是30米.从发电厂到闹市区有多远?
30×(250-1)=7470米.
7.王老师把月收入的一半又20元留做生活费,又把剩余钱的一半又50元储蓄起来,这时还剩40元给孩子交学费书本费.他这个月收入多少元?
[(40+50) ×2+20] ×2=400(元)答:他这个月收入400元.
8.一个人沿着大提走了全长的一半后,又走了剩下的一半,还剩下1千米,问:大提全长多少千米?
1×2×2=4千米
9.甲在加工一批零件,第一天加工了这堆零件的一半又10个,第二天又加工了剩下的一半又10个,还剩下25个没有加工.问:这批零件有多少个?
(25+10)×2=70个,(70+10)×2=160个.综合算式:【(25+10)×2+10】×2=160个
10.一条毛毛虫由幼虫长到成虫,每天长一倍,16天能长到16厘米.问它几天可以长到4厘米?
16÷2÷2=4(厘米),16-1-1=14(天)
三年级数学奥数教案最新模板3
三年级的奥数学习是小学奥数最重要的基础阶段,只有牢固掌握了三年级奥数最基本的知识技巧,才能有效的促进今后的数学学习。三年级是学习奥数至关重要的时期,三年级也是开拓思维的时间。孩子已经掌握了基本的计算能力,逻辑思维能力等,对图形也有一定的认识。
从三年级起,大量的奥数专题便开始有所接触,因此,在专题的学习初期一定要打下良好的基础,好多五六年级专题知识学习比较差的学生正是因为三四年级基础知识没有学好的缘故。
三年级不可小视——小升初的序幕开始慢慢拉开!它是考证的前奏、能力培养的起点、重点校培训班的开始,从三年级开始各个重点校开始通过培训班的形式筛选精英,好多孩子就会选择一些好的培训学校像新东方优能中学,提前进行培养,并且为考进重点校做准备。
1、 打好计算基础
三年级奥数课本系统的介绍了四则运算及其巧算,关于数的计算是比较枯燥的内容,但它同时也是学好奥数的基础,是历次竞赛或选拔比赛中都必不可少的组成部分。
就我校各位老师教学经验表明,在二、三年级打下良好运算基础的同学,一方面使得学生今后的数学学习更加轻松,另一方面,在高年级竞赛或选拔中往往会有相当大的优势。
2、重视应用题
从三年级起,奥数课本中介绍了大量的奥数专题知识,尤其是应用题部分,是所有年级所有竞赛考试中必考的重点知识。学生一定要在各个应用题专题学习的初期打下良好的基础。
现在许多五六年级同学奥数水平提高非常困难,就是因为他们三年级的奥数专题知识掌握的不牢靠。
3、掌握正确方法
在学习计算的基础上,三年级逐步引入了基本应用题,简单图形问题等奥数知识,面对突然增大的奥数信息量,学生可以有意识的培养自己复习。
总结等良好的学习习惯;同时,三年级是学生培养自己的奥数学习方法的最好时间。在三年级接触学习大量奥数知识的前提下,有意识地培养自己的学习方法对今后的奥数学习有非常重要的帮助。
三年级数学奥数教案最新模板4
1、烧水沏茶时,洗水壶要用1分钟,烧开水要用10分钟,洗茶壶要用2分钟,洗茶杯用2分钟,拿茶叶要用1分钟,如何安排才能尽早喝上茶。
2、有137吨货物要从甲地运往乙地,大卡车的载重量是5吨,小卡车的载重量是2吨,大卡车与小卡车每车次的耗油量分别是10公升和5公升,问如何选派车辆才能使运输耗油量最少?这时共需耗油多少升?
3、用一只平底锅烙饼,锅上只能放两个饼,烙熟饼的一面需要2分钟,两面共需4分钟,现在需要烙熟三个饼,最少需要几分钟?
4、甲、乙、丙、丁四人同时到一个小水龙头处用水,甲洗拖布需要3分钟,乙洗抹布需要2分钟,丙用桶接水需要1分钟,丁洗衣服需要10分钟,怎样安排四人的用水顺序,才能使他们所花的总时间最少,并求出这个总时间。
5、甲、乙、丙、丁四个人过桥,分别需要1分钟,2分钟,5分钟,10分钟。因为天黑,必须借助于手电筒过桥,可是他们总共只有一个手电筒,并且桥的载重能力有限,最多只能承受两个人的重量,也就是说,每次最多过两个人。现在希望可以用最短的时间过桥,怎样才能做到最短呢?你来帮他们安排一下吧。最短时间是多少分钟呢?
6、小明骑在牛背上赶牛过河,共有甲乙丙丁四头牛,甲牛过河需1分钟,乙牛需2分钟,丙牛需5分钟,丁牛需6分钟,每次只能骑一头牛,赶一头牛过河。要过河时间最少?是多少?
三年级数学奥数教案最新模板5
例1 已知3∶(x-1)=7∶9,求x。
例2 六年级一班的男、女生比例为3∶2,又来了4名女生后,全班共有44人。求现在的男、女生人数之比。
分析与解:原来共有学生44-4=40(人),由男、女生人数之比为3∶2知,如果将人数分为5份,那么男生占3份,女生占2份。由此求出
女生增加4人变为16+4=20(人),男生人数不变,现在男、女生人数之比为 24∶20=6∶5。 在例2中,我们用到了按比例分配的方法。将一个总量按照一定的比分成若干个分量叫做按比例分配。按比例分配的方法是将按已知比分配变为按份数分配,把比的各项相加得到总份数,各项与总份数之比就是各个分量在总量中所占的分率,由此可求得各个分量。
例3 配制一种农药,其中生石灰、硫磺粉和水的重量比是1∶2∶12,现在要配制这种农药2700千克,求各种原料分别需要多少千克。
分析:总量是2700千克,各分量的比是1∶2∶12,总份数是1+2+12=15,
答:生石灰、硫磺粉、水分别需要180,360和2160千克。
在按比例分配的问题中,也可以先求出每份的量,再求出各个分量。如例3中,总份数是1+2+12=15,每份的量是2700÷15=180(千克),然后用每份的量分别乘以各分量的份数,即用180千克分别乘以1,2,12,就可以求出各个分量。
例4 师徒二人共加工零件400个,师傅加工一个零件用9分钟,徒弟加工一个零件用15分钟。完成任务时,师傅比徒弟多加工多少个零件?
分析与解:
解法很多,这里只用按比例分配做。师傅与徒弟的工作效率
有多少学生?
按比例分配得到
例6 某高速公路收费站对于过往车辆收费标准是:大客车30元,小客车15元,小轿车10元。某日通过该收费站的大客车和小客车数量之比是5∶6,小客车与小轿车之比是4∶11,收取小轿车的通行费比大客车多210元。求这天这三种车辆通过的数量。
分析与解:大客车、小轿车通过的数量都是与小客车相比,如果能将5∶6中的6与4∶11中的4统一成[4,6]=12,就可以得到大客车∶小客车∶小轿车的连比。由5∶6=10∶12和4∶11=12∶33,得到大客车∶小客车∶小轿车=10∶12∶33。以10辆大客车、12辆小客车、33辆小轿车为一组。因为每组中收取小轿车的通行费比大客车多10×33-30×10=30(元),所以这天通过的车辆共有210÷30=7(组)。这天通过大客车=10×7=70(辆),小客车=12×7=84(辆),小轿车=33×7=231(辆)。
练习:
1.一块长方形的地,长和宽的比是5∶3,周长是96米,求这块地的面积。
2.一个长方体,长与宽的`比是4∶3,宽与高的比是5∶4,体积是450分米3。问:长方体的长、宽、高各多少厘米?
3.一把小刀售价6元。如果小明买了这把小刀,那么小明与小强的钱数之比是3∶
5;如果小强买了这把小刀,那么小明与小强的钱数之比是9∶11。问:两人原来共有多少钱?
5.甲、乙、丙三人分138只贝壳,甲每取走5只乙就取走4只,乙每取走5只丙就取走6只。问:最后三人各分到多少只贝壳?
6.一条路全长60千米,分成上坡、平路、下坡三段,各段路程的长度之比是1∶2∶3,某人走各段路程所用的时间之比是3∶4∶5。已知他走平路的速度是5千米/时,他走完全程用多少时间?