《第三章整式及其加减》教案
【学习目标】
1.经历探索规律并用代数式表示规律的过程,能用代数式表示以前学过的运算律和计 算公式.
2.体会 字 母表示数的意义,形成初步的符号感,提高应用数 学的意识,体会数形结合的思想方法.
【学习重点 】
能用代数式表示以前 学过的运算律和计算公式,会用字母表示数.
【学习难点】
体会字母表示数的意义,形成初步的符号感,提高应用数学的意识.
行为提示:点燃激情,引发学生思考本节课学什么.
行为提示:让学生通过阅读教材后,独立完成“自学互研”的所有内容,并要求做完了的小组长督促组员迅速完成.
情景导入 生成问题
随便想一个自然数,将这个数乘5减7,再把结果乘2加 14,无论开始想的自然数是什么,按照上面方法计算得到的数的个位数一定是0.你相信吗?
【说明】以学生喜欢的游戏的方式引入,让学生感受数学的奥妙,激发学生的求知欲.
自学互研 生成能力
先认真阅读教材第78页最上方的图3-1及与图相关的内容,然后与同伴进行交流讨论.
【说明】学生通过观察、分析,与同伴进行交流,找出变化的规律.
【归纳结论】许多图形的变化都具有规律性,用字母表示其变化规律更简单明了.在探究图形的变化规律时,往往要找出哪些量发生变化,哪些量不发生变化.
先独立完成下面的问题,然后再与同伴交流.
问题1 (1)搭200个这样的正方形需要多少根火柴棒?
(2)利用小明的计算方法,我们用200代替4+3(x-1)中的x,可以得到4+3×(200-1)=601.你的结果与小明的结 果一样吗?
【说明】学生通过计算,初步体会用数值代替式子中的字母进行计算,就可以得到对应的式子的值.进一步感受从特殊到一般,从一般到特殊的数学思想方法.
《整式及其加减》单元试卷
24.某市出租车收费标准是:起步价10元,可乘3千米;3千米到5千米,每千米1.3元;超过5千米,每千米2.4元。
(1)若某人乘坐了 ( )千米的路程,则他应支付的费用是多少?
(2)若某人乘坐的路程为6千米,那么他应支付的费用是多少?
26.某单位在2013 年春节准备组织部分员工到某地旅游,现在联系了甲乙两家旅行社,两家旅行社报价均为2000 元/人,两家旅行社同时都对10 人以上的团体推出了优惠措施:甲旅行社对每位员工七五折优惠;而乙旅行社是免去一位带队员工的费用,其余员工八折优惠.
(1)若设参加旅游的员工共有m(m>10)人,则甲旅行社的费用为 元,
乙旅行社的费用为 元;(用含m的代数式表示并化简)
(2)假如这个单位组织包括带队员工在内的共20名员工到某地旅游,该单位选择哪一家旅行社比较优惠?说明理由.
(3)如果这个单位计划在2月份外出旅游七天,设最中间一天的日期为n,则这七天的日期之和为 .(用含有n的代数式表示并化简)
假如这七天的日期之和为63的倍数,则他们可能于2月几号出发?(写出所有符合条件的可能性,并写出简单的计算过程)
《整式及其加减》测试
21.小明去文具用品商店给同学买A品牌的水笔,已知甲、乙两商店都有A品牌的水笔,且标价都是1.5元/支,但甲、乙两商店的优惠条件不同.
甲商店:若购买不超过10支,则按标价付款;若一次购买10支以上,则超过10支的部分按标价的60%付款.
乙商店:全部按标价的80%付款.
(1)设小明要购买的A品牌的水笔是x(x〉10)支,请用含x的式子分别表示在甲、乙两个商店购买A品牌的水笔所需的费用;
(2)若小明要购买A品牌的水笔30支,你认为甲、乙两商店中,到哪个商店购买比较省钱?请说明理由.