最新北师大小学数学五年级上册教案范文

王明刚

最新北师大小学数学五年级上册教案范文1

教学目标:

1、在自由探索的活动中,理解计算组合图形面积的各种方法。

2、能根据各种组合图形的条件,有效地选择计算方法并正确解答。

3、能运用所学的知识,解决生活中组合图形的实际问题。

教学重点:能根据各种组合图形的条件,有效地选择计算方法,并进行正确的解答。

教学难点:如何选择有效的计算方法解决问题。

教学准备:图形卡片、题卡

教学过程:

一、激趣导入。

1、师:老师这里有一个神秘宝盒,你们想知道这里面藏着什么吗?请同学们来摸一摸。

生摸出图形,老师贴在黑板上,指名说说怎样计算这些图形的面积。

2、师:老师也为你们准备了礼物,快拿出来拼一拼,粘在白纸上,看谁拼的图案最漂亮。

生拿基本图形拼。

指名展示所拼图案,说说拼的是什么,是由什么图形拼成的。

3、揭示课题。

这些图形都是由两个或两个以上基本图形拼成的图形,叫做组合图形,这节课我们一起来探索组合图形的面积(板书课题:组合图形的面积)。

4、屏幕出示图形,这些分别是什么图形,这里面有你认识这些图形吗,你是怎样看出来的?

二、探究新知。

1、出示例题。

老师最近正在装修房子,可是遇到了困难,你愿意帮忙吗?

你老师打算在客厅铺上地板,地面的平面图如图,请同学们帮老师做一下预算,估计至少要买多大面积的地板,再实际算一算,并与同学们交流。

生先说估计值,并说出依据,教师在黑板右上角板书。

2、小组探索。

刚才我们只是估计一下,但实际在买的时候,买多了浪费,买少了还要去买,太麻烦,以我们必须求出实际的面积。我们没有学过这种图形的面积,怎么办呢?

生:我们可以把它转化成我们学过的图形再求面积。

小组合作探索,组长拿出工作表,小组同学分别说一说自己的想法,并在图中画出来,看看你们小组能想出几种简便易行的方法。

教师巡视指导。

3、全班汇报交流。

小组汇报,在投影上展示自己小组的做法,分别说说为什么这样分割,怎样求面积。其他小组长把和他一样的方法做上标记。

教师强调:为了和原线段区分开,后添加的线段要画虚线,这条虚线是为了辅助完成这道题的,所以叫做辅助线。

生共同探索所说的方法是否能求出面积,不合适的说出为什么。

把以上方法汇总,说说哪种方法最简单,为什么?

师:分割或添补的越简单,计算起来就会越简便。

4、教师贴出学生选出的

4种简便方法,用卡纸贴在黑板上。

生观察着几种方法,把它们分类。

师相应板书:分割法 添补法

这两种方法在计算时有什么不同吗?

6、选择一种你最喜欢的方法,计算出图形的面积。

指名板演。检查订正,写出答语。

把实际结果与估计结果比较,看看谁估计的比较准。

师:只要选择了简便易行的方法,我们求组合图形的面积才会又快又准确。

三、实际应用。

1、这里有两个鱼缸,请你选择最简便的方法把它们转化成我们学过的图形。

2、学校要粉刷教室,粉刷一面墙每平方米需用

0.15千克涂料,一共需要用多少千克涂料?

生在题卡上答题,师巡视指导。指名展示自己的方法,生判断哪种方法最简便。

3、学校要油漆

60扇教室的门的外面,(单位:米)。

(1)需要油漆的面积一共是多少?

(2)如果油漆每平方米需要花费

5元,那么学校共要花费多少元?

指名读题,说说完成这道题要注意什么?

生独立完成。汇报。

四、全课总结。

你说说这节课你有什么收获。

师:在我们的生活中,数学无处不在,运用我们学过的数学知识来解决身边的难题,那是多么快乐的一件事呀!让我们一起学好数学吧!

五、课外练习。

在你身边找出一到两处组合图形,先估计一下它们的面积,再选择你认为最简便或最适合自己的方法,实际算一算。

最新北师大小学数学五年级上册教案范文2

教学内容:

课本第92页到第93页的教学内容

教学目标:

1、认识组合图形、会把组合图形分解成已学过的平面图形。

2、通过找一找、分一分、拼一拼,培养学生识图的能力和综合运用有关知识的能力,能合理地运用“割”、“补”等方法来计算组合图形的面积。

3、培养学生的观察能力和动手操作的技能,发展空间观念,提高思维的灵活性。

4、通过拼组图形,使学生感受教学与现实生活的密切关系,体会数学带给大家的生活美。

重、难点与关键

1.探索并掌握组合图形的面积计算方法。

2.理解并掌握组合图形的组合及分解方法。

教具准备

教学用三角尺或教学挂图、PPT课件。

教学过程

一、复习导入

1.复习。

你们已经学会了计算哪些平面图形的面积?说一说这些图形的面积计算公式?

长方形的面积=长×宽; 正方形的面积=边长×边长

平行四边形的面积=底×高 ; 三角形的面积=底×高÷2

梯形的面积=(上底+下底)×高÷2

2.导入。

3.大家学会的知识可真多。为了奖励你们,老师请你们去欣赏一些美丽的图案,请同学们欣赏时认真想想:你们发现了什么?

二、新授课

1.认识组合图形。

出示课本第92页的四幅图。

认真观察这四幅图,它们分别是由哪些简单图形组成的?请同学们打开课本第92页,先找一找,然后在四人小组内互相讨论。比比看哪一个小组的分法最简单?

(1)四人小组讨论。

(2)小组各自展示各种分法。

(3)让学生举例说说生活中的组合图形。

同学们,开动脑筋想象:生活中哪些地方还有组合图形

2.探索组合图形面积的计算方法。

教师引导:大家真了不起,知道生活中存在着这么多的美丽组合图形,那如果我们想知道这些组合图形有多大,实际上是求什么?现在我们就来探讨组合图形的面积计算方法。

板书课题:组合图形的面积

(1) 出示例题4(电子教材)

(2) 学生独立解答。

学生解答时,让他们思考还有其他解法吗?如果有困难,可以在小组内互相帮助。

(3) 学生汇报。

解法一:5×5+5×2÷2 解法二:(5+7)×2.5÷2×2

=25+5 =12×2.5÷2×2

=30(m2) = 30(m2)

学生在汇报时,教师提问:你是怎样想的?这两种解法你喜欢用哪一种解法?说说你的理由。

师生小结:从例题中我们可以看出,同一个组合图形,由于分解的方法不同,解法也就不同,所以请同学们想想。求组合图形面积时关键是做什么?(图形分解)

三、巩固练习

完成课本第93页的“做一做”。

问:这块地是由哪些简单的图形组成的?

1.学生独立计算。

2.学生汇报,展示思路。

四、课堂小结

通过这一节课的学习,同学们有什么收获?你认为自己的表现怎样?哪位同学表现的?有哪些不明白的地方?

在小结过程中,不仅让学生小结这节课学到的知识,而且让学生学会评价,学会评价自己和他人。

五、布置作业

这是我们学校将要开辟的一块草坪,如下图。你能算出它的面积吗?现在有两家公司联系,A公司说种一平方米草要5元,B公司说种同样的草一共需要2500元。如果让你决定,你会选择哪家公司?

最新北师大小学数学五年级上册教案范文3

教学内容: 人教版小学数学五年级上册第五单元第三节内容。

教学目标:

知识与技能:在实际情境中,认识计算梯形面积的必要性,能运用梯形面积的计算公式,解决相应的实际问题。

过程与方法:培养学生学会发现知识之间的规律,加强学生动手操作能力和观察能力,在小组合作探索的活动中,经历推导梯形面积公式的过程。

情感态度价值观:在探索梯形面积计算方法的过程中,获得探索问题成功的体验。

教学重点:理解梯形面积的计算方法,正确计算梯形的面积。

教学难点:梯形面积计算方法的推导过程。

教学准备:给每个小组准备梯形若干个,剪刀一把;课件。

教学过程:

一、复习导入,创设情境。

师:同学们,我们在学习平行四边形和三角形面积的计算时,学到一种非常重要的学习方法,还记得是什么方法吗?(转化)

师:谁来说说平行四边形式三角形的面积是怎样推导出来的?

(根据学生所述,教师电脑演示平行四边形和三角形面积公式的推导过程)

师:推导平行四边形和三角形面积公式时,我们都用到了转化的方法,把我们要研究的图形转化成已经学过的图形来发现他们之间的联系,进而推导出面积计算的公式。

师:在生活中,我们能看到各种形状的物体,(出示课件)这辆小汽车的车窗玻璃是什么图形?还记得梯形各部分的名称吗?(出示课件)这是一大一小两个梯形,你认为梯形面积的大小可能会与什么有关?它们之间到底有着怎样的关系呢,这节课我们就来探究梯形的面积计算。(板书课题)

二、猜测验证,自主探究。

师:现在请大家想一想,你准备怎么出梯形的面积?看来“转化”这种方法确实很重要,我们在解决很多问题的时候都是利用已有的知识去解决新问题,那么你们认为梯形可以转化成我们以前学过的什么图形呢?

1、生猜想。(平行四边形、长方形、三角形……)

2、公式探究。

师:你们的这些想法是否正确呢?下面咱们一起来验证一下。

先给同学们30秒的时间独立思考,自己想办法。

(30秒过后)

师:好了,下面的时间请同学们把自己的想法在小组内先交流一下,然后选出一种的方法,利用你们手中的学具推导出梯形面积公式。

3、学生进行探究,师相机指导。

4、生汇报。

师:刚才老师在下面走的时候发现第x组的同学最先推导出了梯形的面积公式,下面请第x组的同学派代表到前面展示一下你们是怎么做的。

(生展台展示)

组1:我们组用两个完全一样的梯形拼成了一个平行四边形,得出拼成的平行四边形的面积是梯形面积的2倍,平行四边形的高与梯形的高相等,平行四边形的底等于梯形的上底与下底之和,从而推导出梯形的面积=(上底+下底)×高÷2(师随机贴图并板书)

师:其它组有没有不同的拼摆方法?(让生在座位上说)

请你说说你们组是怎么拼的,推导出的梯形面积公式是什么?

组2:我们用两个完全一样的直角梯形拼成了一个长方形,推导出梯形的面积公式是梯形的面积=(上底+下底)×高÷2

师:老师在下面走的时候发现有一个组采用了割补的方法推导出了梯形的面积公式,是哪个小组?请到前面展示一下。

组3:我们选择了一个梯形,沿着它的腰对折,然后剪开,再移到右边拼成了一个平行四边形,平行四边形的面积与梯形的面积相等,平行四边形的底等于梯形的上底与下底的和,平行四边形的高等于梯形高的一半,所以梯形的面积=(上底+下底)×高÷2(师随机贴图)

师:哪个小组还有不同的方法?

组 4:我们组把梯形剪成了两个三角形,得出梯形的面积等于两个三角形面积之和,这个小三角形的底等于梯形的上底,高等于梯形的高,所以小三角形的面积=上底 ×高÷2,这个大三角形的底等于梯形的下底,高等于梯形的高,所以大三角形的面积=下底×高÷2,从而推导出梯形的面积=上底×高÷2+下底×高÷2(师随机贴图)

(注:师在生汇报的过程中要让生到黑板上画出小三角形也就是钝角三角形的高在哪里,并引导生说明钝角三角形的高为什么和梯形的高相等)

师:刚才同学们说出了这么多的方法,你们真了不起!老师也想出了一种方法,我们一起来看看。

(幻灯出示转化过程)

师:谁能根据老师展出的这种方法推导出梯形的面积公式?

生口头叙述。

师:你真聪明!其实推导梯形面积公式的方法还有很多很多,有兴趣的同学可利用课下时间进一步探究。

师:好了,如果用s表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,那么梯形的面积公式用字母可以怎样来表示?

生:s=(a+b)h÷2

(师板书)

师:请同学们观察这个公式,想一想,要想求梯形的面积必须知道哪些条件?

由此看来梯形面积的大小与它的上、下底和高这三个因素有关,那么,在计算时应注意什么呢?

三、实践运用,解决问题

接下来我们一起走进生活,来解决一个实际问题。

师:课件出示例题:

(这是我国长江三峡水电站大坝,它的横截面的一部分是梯形,求它的面积。)

师:让生以最快的速度在练习本上只列式不解答。老师算了一下这道题的结果,等于10530平方米,同学们可利用课下时间验证一下老师算的到底对不对。

师:梯形的面积应用很广泛,在很多物体中经常会看到梯形。下面我们来解决另一个日常生活中的问题。(幻灯出示)

一辆汽车侧面的两块玻璃是梯形(如下图),它们的面积分别是多少?

师:好,剩下的时间我们来解决其他问题。

1.算出下面每个梯形的面积。(单位:厘米)90 页第3题

2.判断题。

(1)两个梯形都能拼成一个平行四边形。( )

(2)两个形状一样的梯形一定能拼成一个平行四边形。( )

(3)两个完全一样的梯形一定能拼成一个平行 四边形。 ( )

(4)平行四边形的面积是梯形面积的2倍。( )

3选择题

(1)梯形的上底是4米,下底是6米,高是5米,它的面积是( ) 。

A. 45平方米 B. 25平方米 C. 25米

( 2 ) 一个梯形上底是80厘米,下底是12分米.高是5分米,它的面积是( )平方分米。

A 50 B. 25 C. 230

4. 90 页第3题

5、一条新挖的渠道,横截面是梯形,渠口宽2.8米,渠底宽1.4米,渠深1.2米. 横截面的面积是多少平方米?

四、小结。

师:这节课同学们在探索的过程中发挥了自己的聪明才智,利用转化的思想创造出了多种推导梯形面积计算公式的方法,并能用所学的知识解决生活中的问题。你们真了不起!今后我们将会利用这种方法来探究更多的有关图形的知识。相信你们今后会有更加出色的表现

最新北师大小学数学五年级上册教案范文4

教学目标:

1让学生在实际情境中,认识计算梯形面积的必要性。

2在自主探索活动中,让学生经历推导梯形面积公式的过程。

3能运用梯形面积的计算公式,解决相应的实际问题。

教学重难点:

理解梯形面积公式的推导过程,帮助学生形成思考问题的习惯。

教学准备:

梯形纸片、多媒体课件、剪刀。

教学过程:

一复习引入回顾平行四边形、三角新的面积公式,想一想:三角型面积的公式是怎么推导出来的

二探究新知

实际操作,自主探究。

电脑演示地24页的情境图,启发学生思考:如何把体型转化成我们已经学过的图形呢?

1独立操作,自主探索。

学生用事先准备的学具自己进行剪拼,在探索的过程中,逐步形成特有的思考问题的习惯。

2小组讨论。

四人小组继续运用转化的方法将梯形转化成前面学过的图形,进而求出梯形的面积。

3交流汇报,发现规律。

(1)引导观察,转化后的图形与原来的梯形有什么关系?请学生用语言描述梯形面积的推导过程。

(2)联系三角形的面积公式,分析理解:为什么梯形和三角形的面积计算公式都要除以2?

(3)经观察分析后,引导学生得出结论,并用字母公式来表示。

三看书质疑,交流感想

阅读第24页内容,回顾自己探索梯形面积公式的过程,并与同伴谈谈自己的想法。

完成课前提出的问题

四巩固应用,拓展提高

完成25页习题

五全课总结与反思

通过本课的学习,你又有哪些收获?你在学习方法上又有了那些提高

新北师大小学数学五年级上册教案范文5

【教学内容】

九年义务教育小学《数学》教科书(人教版)第九册。

【教材分析】

梯形而积的计算是在学生学会计算平行四边形、三角形的面积计算的基础上进行教学的。教材的编排不同于平行四边形和三角形。它的编排特点是引导学生把梯形转化为已经学过的图形。

再求面积。因此教材的编写跨越了数方格的感性认识阶段。引导学生思考怎样仿照求三角形面积的方法。用转化的思想。探究梯形面积的计算方法。这部分内容是学生以后学习圆面积和立体图形表面积的基础。

【学情分析】

学习本课内容时学生己经掌握了长方形、正方形、平行四边形、三角形的面积计算方法。而且在学习平行四边形、三角形面积时。对转化、平移等数学思想的方法己经有了一定的认识。学生具备一定的知识和方法基础。因此。梯形面积的学习是运用旧知识解决新问题。实现迁移类推和新旧转化。进一步发展学生思维的创新能力和动手实践能力。

【教学目标】

1.使学生用转化的思想方法自行尝试学习,通过不同途径探究推导出梯形面积的计算方法。学会应用公式计算梯形的面积。

2.进一步发展学生利用旧知识解决新问题的能力。发展学生的创造思维能力、动手实践能力。通过讨论、争辩、操作和推理。提高学生解决实际问题的能力。发展学生的空间概念。

3.向学生渗透转化的思想。培养学生的合作意识和竞争意识。

【教学准备】

多媒体课件。同样大小的梯形纸片(至少四弓长)。剪刀。

【教学过程】

一、复习旧知,引入探究情境

1.教师谈话:请说出所学过的平面图形的面积计算公式。

2.教师出示一个梯形。提问:“这是什么图形?’’看到这个图形大家想提出关于这个图形的什么问题?

3.猜测:梯形面积计算能转化成我们以前学过的图形面积来进行计算吗?

4.下面就请同学利用手中的材料动手实践。进行验证。

【设计意图】:通过义习。梳理学过的直线型图形的而积计算公式。并通过质疑激发学生自主探究的-。

二、自主探究,寻求规律

(一)推导面积计算公式1.谈话指导:请同学们根据我们以前学过的有关平面图形面积计算公式推导的知识和方法。利用自己手中的材料以小组为单位尝试推导梯形的面积。

2.学生尝试探究验证。教师巡视观察指导学生的学习方法并帮助学习有困难的小组。

【设计意图】:给学生提供充分动手动脑的机会,给学生利用旧知探求新知的时间。把知识产生的过程创造出来。培养学生的探究精神并学会探究的方法。

3.展示汇报自己的学习成果。

(1)让学生自由发表意见,说出自己转化推导的方法。

(2)教师配合学生的叙述。用课件演示梯形是如何转化成己学过的平而图形的,并让其他同学质疑、评价(这里可能会出现拼一拼、割补、分一分等多种方案)。

4.引导学生总结计算公式。

(”教师提问:“谁能总结出梯形的面积计算公式?请说明你的根据。”

(2)教师根据学生的回答进行小结并板书:

梯形的面积=(上底+下底)X高=25.根据推导过程和公式。让学生提出问题:

(1)二上底加下底”指的是什么?

(2)为什么要“除以2"?

(3)通过对三角形、梯形面积计算公式的学习。你有哪些新的发现和收获(让学生谈想法)?

6.教师小结:(略)7.让学生用字母表示出梯形的面积的计算公式:

【设计意图】:学生通过自主探究合作交流。不仅知道了梯形的面积计算公式。而且更明确如此计算的原因。达到“知其然。

更知其所以然”的学习效果。培养学生科学学习的习惯和创新能力。通过教师的课件演示,使学生形象地感知转化思想的内涵。

(二)运用公式。进行计算1.出示例题:一条新挖的渠道,横截面是个梯形。渠口宽2.8米。渠底宽1.4米,渠深1.2米。它的横截面的面积是多少平方米?

2.学生自己尝试独立计算。

3.学生互相出题进行公式应用练习。

【设计意图】:通过学生互相出题训练。不但巩固了知识。而且实现学生真正的自主参与。同时充分地发挥了学生的聪明才智,使训练多样而有趣。变苦学为乐学。

三、巩固练习完成做一做。

2.完成练习十九的1-4题。

3.灵活变换条件。联系实际进行练习。

4.拓展尝试:下图是两个相同的汽角三角形补在一起。求涂色部分的面积。(单位:分米)

【设计意图】:灵活的练习是检验学习效果的有效方法。联系实际能充分体现学以致用的原则。数学来源于生活更应该服务于生活,因此。联系实际的练习才是更为科学的训练方法。

【教学反思】

本节课的学习是由学生独立思考、讨论、归纳、概括解决的。体现了学生主体的发展。但不足之处是:由于学生个体间发展的不平衡。因此并不是每一个学生都能去积极地思考、讨论。另外。还应多提一些开放性强的问题。使学生的思维得到充分的训练。