2021六年级数学教案范文1
教学目标:
1.知识与技能目标
能够正确运用圆锥体积计算公式解决实际有关圆锥体积的实际应用问题。
2.过程与方法
在探作中完成圆锥体积公式的推导。在合作探究中探明等底等高圆柱体积与圆锥体积内在联系。
3.情感态度与价值感
在探索合作中感受教学与我生活的密切联系,让学生感受探究成功的快乐。
教学重点:
掌握圆锥体积的计算公式,并能灵活利用公式求圆锥的体积。
教学难点:
理解圆锥体积公式的推导过程及解决生活中的实际问题
学习者特征分析:
接受教育者是小学六年级的学生。
教学策略选择与设计:
(1)引导学生主动建构知识是新课标的重要理念,六年级的学生尽管具备了一定的逻辑思维能力,但感性知识对于他们来说还是非常重要的。因此,教学中通过引导学生通过自主探索、解决问题,真正掌握所学知识,发展数学能力,真正做到“动手操作、体验成功”
(2)以实验要求为主线,既动手操作,又动脑思考,努力探索圆锥体的计算方法。
(3)问题解决为主的教学策略:通过演示、小组交流、动手操作、感念辨析等方式,本课从具体的学生感兴趣的活动中,让学生自己发现问题,提出问题,体验探索成功的快乐;提高学生解决问题的能力,巩固所学知识。
教学资源与工具设计:
(1)每位同学准备等底等高的圆柱体和圆锥体6套,大小不同的圆柱体和圆锥体6套、6水槽红颜色水。直尺6把。
(2)教师自制的多媒体课件;
教学过程:
一、复习旧知,课前铺垫
1.怎样计算圆柱的体积?
指名回答,教师板书:圆柱体的体积=底面积×高。
2.一个圆柱的底面积是60平方分米,高15分米,它的体积是多少立方分米?
指两名板演,全班齐练,集体订正。
二、提出质疑,引入新课
圆锥有什么特征? 它的体积如何计算呢?
今天我们就利用这些知识探讨新的——怎样计算圆锥的体积(板书课题)
三、动手操作 ,获得新知
1. 探讨圆锥的体积公式
教师:怎样探讨圆锥的体积计算公式呢?在回答这个问题之前,请同学们先想一想,我们是怎样知道圆柱体积公式的:
学生回答,教师板书:
圆柱——(转化)——长方体
圆柱体积公式——(推导)——长方体体积公式
教师:借鉴这种方法,为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体。你们小组比比看,这两个形体有什么相同的地方?学生操作比较。
(1) 提问学生:你发现到什么?(这个圆柱体和这个圆锥体的形状有什么关系)
(学生得出:底面积相等,高也相等。)
底面积相等,高也相等,用数学语言说就叫“等底等高”。
(板书:等底 等高)
(2)为什么?既然这两个形体是等底等高的,那么我们就跟求圆柱体体积一样,就用“底面积×高”来求圆锥体体积行不行?为什么?
教师:圆锥体的体积小,那你估计一下这两个形体的体积大小有什么样的关系?(指名发言)
用水和圆柱体、圆锥体做实验。怎样做这个实验由小组同学自己商量,但最后要向同学们汇报,你们组做实验的圆柱体和圆锥体在体积大小上有什么样的倍数关系。
(3) 学生分组做实验。
谁来汇报一下,你们组是怎样做实验的?
你们做实验的圆柱体和圆锥体在体积大小上发现有什么倍数关系?(学生发言:圆柱体的体积是圆锥体体积的3倍)
同学们得出这个结论非常重要,其他组也是这样的吗?
我们学过用字母表示数,谁来把这个公式整理一下?(指名发言)
(4)学生操作:出示另外一组大小不同的圆柱体和圆锥体进行体积大小的比较,通过比较你发现什么?
学生回答后,教师整理归纳:不是任何一个圆锥体的体积都是任何一个圆柱体体积的。 (老师拿起一个小圆锥、一个大圆柱)如果老师把这个大圆锥体里装满了砂子,往这个小圆柱体里倒,倒三次能倒满吗?(不能)
为什么你们做实验的圆锥体里装满了水往圆柱体里倒,倒三次能倒满呢?(因为是等底等高的圆柱体和圆锥体。)
在等底等高的情况下。
(老师在体积公式与“等底等高”四个字上连线。)
现在我们得到的这个结论就更完整了。(指名反复叙述公式。)
教师:同学们圆锥体里装满了水往圆柱体里倒,只倒一次,看看能不能想办法推出计算公式?让学生动脑动手?
得出用尺子量圆锥里的水倒进圆柱里,水高是原来水高的1/3.
小结:今后我们求圆锥体体积就用这种方法来计算。
(5)应用巩固
1.出示例题学生读题,理解题意,自己解决问题。
例 一个圆锥形的零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?
学生完成后,进行小组交流。
你是怎样想的和怎样解决问题。(提问学生多人)
教师板书:
1/3 ×19×12=76(立方厘米)
答:它的体积是76立方米
2. 练习题。
一个圆锥体,半径为6cm,高为18cm。体积是多少?(学生在黑板上只列式,反馈。)
3.出示例2:要求学生自己读题,理解题意思。
有一个近似于圆锥的小麦堆,测得底面半径是2米,高是1.5米。你能计算出这堆小麦的体积吗?
(1)提问:从题目中你知道什么?
(2)学生独立完成后教师提问。并回答同学的质疑:3.14×()×1.5表示什么?为什么要先求圆锥的体积?得数保留整千克数是什么意思? 4.比较:例1和例2有什么地方不同?
(1)直接告诉了我们底面积,而(2)没有直接告诉,要求我们先求出底面积,再求出圆锥体积。
四、综合练习,发展思维
1.一个圆锥形沙堆,高是1.5米,底面半径是2米,每立方米沙重1.8吨。这堆沙约重多少吨?
2.选择题。
每道题下面有3个答案,你认为哪个答案正确就用手指数表示。
(1)一个圆锥体的体积是a立方米,和它等底等高的圆柱体体积是( )
立方米 3a立方米 9立方米
(2)把一段圆钢切削成一个的圆锥体,圆柱体体积是6立方米,圆锥体体积是( )立方米
6立方米 3立方米 2立方米
3.学生操作
看看我们的教室是什么体?(长方体)
要在我们的教室里放一个尽可能大的圆锥体,想一想,怎样放体积?(小组讨论)
指名发言。当争论不出结果时,让学生以小组为单位动手测量数据:教室长12m,宽6m,高4m.并板书出来,再比较怎样放体积的圆锥体。
五、课后小结,归纳知识
这节课你有什么收获?哪个同学、哪个小组学习?
六、作业布置,巩固新知
1、本节课后第3、4、5题。
2、回去观察你生活身边有哪圆锥物体?测量计算它们的体积。下节课交流汇报。
2021六年级数学教案范文2
教学内容:
第87页例1、例2,88页课堂活动第1、2题,练习二十二第1~4题。
教学目标:
1.在现实情境中初步认识负数和理解负数的意义,了解负数的产生与作用,感受负数使用带来的方便。
2.会正确地读、写正、负数,知道0既不是正数,也不是负数。
3.使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的意识。
教学重点:
负数的意义和负数的读法与写法。
教学难点:
理解0既不是正数,也不是负数。
教具准备:
多媒体课件
教学方法:
教师讲授、合作交流
教学过程:
一、复习导入
提出问题:举例说明我们学过了哪些数?
教师小结:为了实际生活的需要,在数物体个数时,1、2、3……出现了自然数,物体一个也没有时用自然数0表示,当测量或计算有时不能得出整数,我们用分数或小数表示。
提出问题:我们学过的数中最小的数是谁?有没有比零还小的数呢?
二、创设情境、学习新知
1.教学例1。
(1)出示:中央电视台天气预报的一个场面,主持人说:“哈尔滨零下6至3摄氏度,重庆6至8摄氏度……”
同学们,你们对情境中的内容一定相当熟悉吧?你能给大家讲讲“哈尔滨零下6至3度”这句话是什么意思吗?
为什么阿姨说的零下6摄氏度,屏幕上打出的字幕就变成了-6℃呢?
这里有零下6℃、零上6℃,都记作6℃行吗?
你有什么简洁的方法来表示他们的不同呢?
教师小结:同学们的想法都很好。现在,国际数学界都是采用符号来区分,我们把比0摄氏度低的温度用带有“-”号的数来表示,例如把零下6℃记作-6℃,读作负6摄氏度;零上6℃记作+6℃,读作正6摄氏度或6摄氏度。
(2)巩固练习。
同学们,你能用刚才我们学过的知识,用恰当的数来表示温度吗?试试看。
学生独立完成第87页下图的练习。
教师巡视,个别辅导,集体订正写得是否正确,并让学生齐读。
2.自主学习例2。(进一步认识正数和负数)
教师:同学们,你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。
今天,老师还带来一张珠穆朗玛峰的海拔图,请看。(珠穆朗玛峰的海拔图,教科书第87页的左部分,数字前没有符号)从图上你看懂了些什么?
引导学生交流:珠穆朗玛峰比海平面高8844.43米。
我们再来看x疆的吐鲁番盆地的海拔图。(吐鲁番盆地的海拔情况,教科书第87页的右部分,数字前没有符号)你又能从图上看懂些什么呢?
引导学生交流:吐鲁番盆地比海平面低155米。
教师小结:珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔高度吗?
学生交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。吐鲁番盆地的海拔可以记作:-155米。(板书)
教师追问:你是怎么想到用这种方法来记录的呢?
最后教师将数字改动成:海拔+8844.43米或8844.43米;海拔-155米。
教师小结:以海平面为界线,+8844.43米或8844.43米这样的数表示比海平面高8844.43米;-155米这样的数表示比海平低155米。
(2)巩固练习:教科书第88页试一试。
3.小组讨论,归纳正数和负数。
教师:通过刚才的学习,我们收集到了一些数据,(显示)我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。那么,你们观察一下这些数,它们一样吗?它们可以怎样分类呢?
提出疑问:0到底归于哪一类?(如有学生提出更好)引导学生争论,各自发表意见。
小结:(结合图)我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0就像一条分界线,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把像+6、3、+8844.43等这样的数叫做正数;像-6、-155等这样的数我们叫做负数;而0既不是正数,也不是负数。(板书)
通常正号可以省略不写。负号可以省略不写吗?为什么?
最后,让学生看书勾划,并思考两个“……”还代表那些数?(让学生对正负数的理解更全面和深刻)
三、运用新知,课堂作业
1.课堂活动第1题。让学生先自己读读,并举例说说是什么意思?全班订正后,同桌间自选5个互相说说。
2.课堂活动第2题。同桌先讨论,然后反馈。
四、小结
同学们,今天我们认识了负数。你有什么收获?
五、课堂作业
练习二十二第1、4题。
家庭作业:练习二十二第2、3题。
板书设计:
负数的初步认识
正数:20、22、14、 +8844.43…
0:既不是正数也不是负数
负数:-2、-30、-10、-15、-155…
2021六年级数学教案范文3
教学内容:
课本第57——58页“扇形统计图“。
教学目标:
1、通过实例,认识扇形统计图,了解扇形统计图的特点与作用。
2、能读懂扇形统计图,从中获取有效信息,体会统计图在现实生活中的作用。
3、提高学生的实际应用能力。
教学重点:
认识扇形统计图,了解扇形统计图的特点与作用。
教学难点:
学生的实际应用能力的提高。
教具准备:
课件
教学过程:
一、复习旧知,引入新知
1、电脑课件呈现下表
种 类 摄入量/克 占总摄入量的百分比
油脂类 50
奶类和豆类 450
鱼、禽、肉、蛋等类 600
蔬菜和水果类 900
谷类 1800
2、电脑课件呈现统计图(或以学生的作品亦可)。
3、引入新知。
二、探索交流,获取新知
1、什么样的统计图是扇形统计图呢?
2、了解扇形统计图特点
3、即时练习。
完成课后的“说一说”。
(1)学生观察课文中的扇形统计图,读一凑统计图中的各类信息。
(2)说一说,你有什么体会。
学生说信息,并计算各种成分的百分比
汇报计算结果,订正
学生发言、交流
学生汇报:条形统计图可以清楚地看到每一种食物的摄入量。
观察,说出获得的信息
根据教师引导说出发现
从扇形统计图中能够清楚地看到各类食物的摄入量占总摄入量的百分之几。
观察数据,发现,说出不同,说出自己的看法
进行计算,订正
三、小结本课学习内容
谈话:这张表是小丽一家三口一天各类食物的摄入量,请你运用条形统计图表示表中的数据。说一说,条形统计图有什么特点?
提问:从条形统计图中,可以清楚地看到每一类食物的摄入量,能看出每一类食物的摄人量占总摄入量的百分之几吗?
揭题,板书课题:扇形统计图。
出示课件一边呈现扇形统计图,一边进行简要讲解,使学生了解扇形统计图是用扇形面积的大小(占圆面积的百分之几)来表示各类数量的多少。(占总摄人量的百分之几)
四、巩固升华
完成课后“试一试”。
1、比较各项活动时间,说一说有什么不同。提出数学问题
2、总时间是多少?各项活动时间可以怎么计算?
3、参照题目,画一个扇形统计图表示自己一天的作息时间,并和同学进行交流。
五、全课小结:你今天有什么收获?还有什么不懂的地方?
板书设计:
扇形统计图
能清楚地反映整体与部分的关系。
2021六年级数学教案范文4
教学内容:
自主学习天地P57-58练习题
教学目标:
1、通过练习,进一步巩固复式条形统计图与复式折线统计图的知识。
2、从统计图中获取尽可能多的信息,体会数据的作用。 3、进一步学习制作复试折线统计图,培养学生动手操作能力,分析能力和合作能力。 教学重点:从统计表里收集信息,并能用这些信息分析问题。
教学难点:
如何根据信息绘制统计图
教学过程:
一、基础练习,全班交流
1、练功房。
基础练习,了解统计图的种类。分辨什么数据用什么统计图描述更清楚更直观。
2、智慧树
(1) 这是什么统计图?
(2) 分析图中的数据,回答问题。
(3) 第3题,你能知道哪些信息?
3、实践大本营
提高练习。
让学生选择一题来绘制统计图
(1) 绘制统计图需要哪些数据?
(2) 绘制统计图你需要注意什么?
学生独立完成后,集体订正。
二、变式练习题
课件出示练习题。
学生看题,先集体分析题目,一起探讨数学问题。
1、这是什么统计图?
2、你能解决这些问题吗?
3、你知道了哪些信息?
4、你还有什么疑问?
教学小结:
通过这次练习,你有什么收获? 通过练习,进一步巩固结复式统计图的理解与掌握
通过自主交流与探索, 让学生自主选择。
2021六年级数学教案范文5
教材分析:
在学习本单元的内容之前,学生已经在第一、二学段学习了前后、上下、左右等表示物体具体位置的知识,也学习了简单的路线等知识。这些知识为学生进一步认识物体在空间的具体位置打下了基础。而本单元的学习则是第一、二学段学习内容的发展,它对提高学生的空间观念,认识生活周围的环境,都有较大的作用。
教材从学生自己十分熟悉的座位表着手,通过说一说张亮的座位,引出第几组与第几个的话题。接着,再从第几组第几个引出抽象的数对表示方法。这一从学生的经验中,逐步抽象出数学的表示方法,符合学生的由具体到抽象、由特殊到一般的数学认知规律。有助于学生理解“数对”在确定位置中的作用。
教学目标:
1.在具体的情境中,能在方格纸上用数对确定位置。
2.通过具体的情境,理解数对对确定位置的作用,并能根据数对确定物体的位置。
教学重点:
掌握确定位置的方法,说出某一物体的位置。
教学难点:
在方格纸上用"数对"确定位置。
教学过程:
一、活动一:活动引入,认识数对
1、明确列、行排列规则
(1)学生按座位卡找座位。
位置卡
第 -列,第 -排
学生可能出现
A、找不到座位。
B、两人找到了同一个座位。
(2)请同学说说找座位的方法,明确排与列的数法。
我们把竖排叫做列,确定第几列一般从左往右数,引导生按列报数;横排叫做行,确定第几行一般从前往后数,引导生按行报数。
(3)重新找自己的座位。
(4)班长坐在第几列第几行?(同时板书)
2、体会学习数对的必要,认识数对
(1)用学生自己喜欢的简便的方法表示班长的位置,可以是数字,也可以是符号。(学生板演表示的多种形式)
这么多的方法都对不对呢?你有什么意见?
(2)在数学上就有一种“统一的方法”可以既清楚又简便的表示位置。
班长的位置3列2排就可以用(3,2)来表示。
(3)你在教室里的位置是第几列第几行?用数对怎样表示?小组交流。
小结:根据两个数组成的数对,能很快确定教室里每个人的位置。
生活中有没有运用数对解决的问题呢?
3、生活中应用数对
(1)根据位置写数对
①出示哈尔滨旅游景点的分布图。
你能表示出各个景点在图中的位置吗?
②独立书写,全班交流。
(2)根据数对找位置
①出示残缺的太阳岛景点分布图。
你能帮忙把地图补充完整吗?
②学生操作后交流。
得出:表示同一行中景点位置的数对,它们的第二个数相同;表示同一列中景点位置的数对,它们的第一个数相同。一个数能准确说出一个地点的位置吗?数对中的两个数能帮助我们很快在平面图上找到某个具体的地点。
二、活动二:学生小结
学习了确定位置,你有什么收获?
三、活动三:课外引申——数对在国际象棋中的运用。
1、课件出现国际象棋棋盘和棋子
(1)介绍:国际象棋的棋盘是一个正方形,等分为六十四方格。这些方格有深浅两种颜色,交替排列。国际象棋的八条直线分别用a、b、c、d、e、f、g、h表示,八条横线分别用1、2、3、4、5、6、7、8表示。每个方格便有了自己的名字。国际象棋的棋子有黑白两色,各有一个王、一个后、两个车、两个象、两个马和八个兵。
(2)如果白王所处的位置用国际象棋专用的方法记录为g2,你知道是用什么方法记录棋的位置的吗?
(3)课件出现三枚棋子在棋盘上的不同位置,问:其他棋各在什么位置?
(4)如果有一枚棋走一步记录为C6—C2,你知道是哪枚棋从什么位置走到什么位置上吗?
四、活动四:游戏——摆子连线
比赛规则:每3人一个小组,第一个学生先掷两次骰子。假如第一次是2,第二次是4,就将自己的棋子放在(2,4)的位置上(说明:棋子用一点来表示)。
第二个学生接着同样的操作,按所掷的点数放棋子。如果位置被其他棋子占了,可以重新再掷。
另外的一个学生负责记录。
每放对一个棋子加1分、如果你将两个棋子连在一起就奖2分,3个棋子连在一起就奖3分,依此类推,将你们俩的得分记录在一张纸上、谁先得8分,谁就赢了。(学生操作,教师下去巡视)
活动五:全课总结
刚才,我们是怎样探究总结出用数对表示位置的方法的?
板书设计:
位 置