7.2定义与命题:教案
一、学生知识状况分析
学生技能基础:学习本节之前,学生已经对命题的含义有所了解,并且已经学习过一些公理和定理,为公理化思想的培养作好了充分准备.
活动经验基础:有了上一节的活动基础,学生对本节课主要采取学生分组交流、讨论、 举例说明的学习方式有比较好的活动经验.
二、教学任务分析
在上一节课的学习中,学生对命题的概念有了清楚 的认识,但学生对于命题的构造,什么是真命题,什么是假命题还不甚了解,本节课旨在让学生对真假命题有一个清楚的认识,从而进一步了解定理、公理的概念,为此,本节课的教学目标是:
1.了解命题中的真命题、假命题、定理的含义;
2.解命题的构成,能区分命题中的条件和结论。
3.经历实际情境,初步体会公理化思想和方法,了解本教材所采用的公理.
4.培养学生的语言表达能力。
三、教学过程分析
本节课的设计分为五个环节:回顾引入——探索命题的结构——思考探讨——读一读——课堂反思与小结.
6.2定义与命题:同步练习
1.下列句子中,不是命题的是( )
A.三角形的内角和等于180度; B.对顶角相等;
C.过一点作已知直线的平行线; D.两点确定一条直线.
6.2 定 义与命题:课后测试
1.下列命题属于定义的是( )
A.两点之间线段最短
B.25的平方根是±5
C.同旁内角互补
D.含有两个未知数,并且未知数的次数是1的整式方程是二元一次方程
2.下列叙述:①两点确定一条直线;②同位角相等;③每一个偶数都能被4整除;④点到直线的距离是该点到这条直线的垂线段的长度.其中是定义的是( )
A.① B.② C.③ D.④
3.下列语句是命题的是( )
A.连接P,Q两点
B.画一条线段等于已知线段
C.过点M作直线PQ的垂线
D.两条直线相交,有且只有一个交点
4.命题:①邻补角互补;②对顶角相等;③同旁内角互补;④两点之间线段最短.其中真命题的个数有( )
A.1个 B.2个 C.3个 D.4个
5.已知三条不同的直线a,b,c在同一平面内,下列命题中:
①如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b∥c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.
其中真命题有__________.(填写真命题的序号)
6.说明命题“如果a,b,c是△ABC的三边,那么长为a-1,b-1,c-1的三条线段能构成三角形”是假命题的反例可以是( )
A.a=2,b=2,c=3 B.a=2,b=2,c=2
C.a=3,b=3,c=4 D.a=3,b=4,c=5