最新六年级下数学教案例文

张东东

最新六年级下数学教案例文1

教材说明

本小节包括百分数的意义和读写两部分内容。教材首先从几个不同的角度选取了学生熟悉的几个百分数。接着通过聪聪提问:“你还在什么地方见过上面这样的数”让学生交流(课前搜集到的)生活中的百分数。在此基础上直接说明:像上面这样的数,如18%、50%、64.2%……叫做百分数。然后进一步让学生结合实例说说百分数的具体含义,并用定义的方式概括出百分数的意义:百分数表示一个数是另一个数的百分之几。百分数也叫百分率或百分比。使得“百分数”这一概念的内涵更加明确。最后说明百分数的表示法和写法。

教学建议

1. 教学时,可分三个层次进行。第一层次:联系生活实际引出百分数。课前,让学生广泛收集、整理生活中的百分数。课中交流收集到的百分数,说说是从哪里收集的。让学生们充分感受到百分数在生产、工作和生活中的广泛应用。或者先通过课件或挂图呈现教材第77页的插图,提出问题“教材收集了哪些数学信息,谁能向大家介绍一下?”随着学生的介绍老师将其中的百分数表示出来,引起学生的注意;接着提出“你还在什么地方见过上面这样的数”引导学生交流课前搜集到的百分数,然后说明:像上面这样的数,如18%、50%、64.2%……叫做百分数。接着进一步提出“人们为什么这么喜欢百分数,用百分数有什么好处?百分数代表什么含义呢?从而揭示课题:“百分数的意义与写法”。

第二层次:理解百分数的具体含义。让学生结合实例说说百分数的具体含义。在这一过程中要鼓励学生用自己的语言大胆表达,让学生在体验大量生活实例的基础上,讨论、概括百分数究竟表示什么?再得出结论:表示一个数是另一个数的百分之几的数,叫做百分数。

然后让学生思考“百分数和我们学过的哪种数比较相似?”“百分数和分数完全一样吗?”“在上面这些事例中,为什么选择使用百分数而不是分数?”通过讨论使学生了解百分数与分数的联系和区别。

第三层次:教学百分数的读写。先说明如何写百分数:通常不写成分数的形式,而是在原来的分子后面加上百分号“%”。再让学生尝试写百分数并互相评议。评议中注意提醒学生,写百分号时,两个圆圈要写得小一些,以免和数字混淆。接着教学百分数的读法,可以向学生直接说明:百分数的读法与分数的读法大体相同,也是先读分母,后读分子。百分数的读写可以采取自学教材——尝试读写——交流评议的形式进行。

2. “做一做”第3题比较百分数和分数在意义上的不同时,应着重使学生明确:分数既可以表示一个数,又可以表示两个数的关系。这里所讲的百分数只表示两个数的关系,所以它的后面不能写单位名称。

3. 关于练习十八中一些习题的说明和教学建议。

第3题是理解百分数意义的题目。要鼓励学生大胆设计,发展个性,通过交流使学生了解到:相同的百分数可以用不同的设计表示。

第4题练习后,可以让课堂上还没有机会交流自己收集到的百分数信息的学生继续介绍,其余学生写出(或读出)相关百分数,进一步加深学生对百分数意义的理解,密切百分数与生活的联系。

最新六年级下数学教案例文2

一、教学内容

信息的误导

二、教学目标

1.会综合应用学过的统计知识,能从统计图中准确提取统计信息,能正确解释统计结果。

2.能根据统计图提供的信息,做出正确的判断或简单预测。

三、具体编排

1.例1。

例1说明从信息表达比较模糊的统计图中无法得到准确客观的结论。

教学时,引导学生分析图中“其他”部分的具体含义,使学生明确:“其他”占彩电市场份额的47%,其中可能包含有比A牌更畅销的彩电。从而使学生认识到:制作统计图时,一定要客观准确地反映信息;在分析统计图时,不要被数据模糊的统计图误导。

2.例2。

例2说明利用统计图进行统计分析时,不能仅仅关注统计图的外在表象,还应了解统计图所包含的具体的统计信息,才能避免做出错误的判断。

教学时,可先呈现这两幅统计图,让学生说说:“A、B两人绘制的是同一个公司员工的月薪统计图,为什么看起来不一样呢?”引导学生分析原因并认识到:在运用统计图进行比较和判断时,一定要注意统一标准,才不致发生误判。

四、教学建议

1.注重知识的前后联系,培养学生综合分析能力。

应引导学生在复习旧知的基础上重点进行综合分析,从而使学生学会从统计图中准确提取统计信息,能对统计结果做出正确解释,并能根据统计结果作出准确的判断、预测。

2.把握好教学要求。

本单元教学时应注意向学生阐明以下两点:

(1)统计图在表述统计结果时具有直观、形象的特点,故统计活动中常用统计图来描述统计信息,展示统计结果。

(2)不要被统计图表面的信息迷惑、误导,要保证所得结论的真实性和客观性。实际教学时可先让学生观察统计图,谈谈直观感受和看法,再引导学生分析统计图表达和包含的数据信息,得出正确结论。

最新六年级下数学教案例文3

教学内容:

《反比例的意义》是六年制小学数学(人教版)第十二册第一单元《比例》中的内容。是在学过“正比例的意义”的基础上,让学生理解反比例的意义,并会判断两个量是否成反比例关系,加深对比例的理解。

学生分析:

在此之前,他们学习了正比例的意义,对“相关联的量”、“成正比例的两个量的变化规律”、“如何判断两个量是否成正比例”已经有了认识,这为学习《反比例的意义》奠定了基础。

设计理念:

学习方式的转变是新课改的显著特征,就是把学习过程中的分析、发现、探究、创新等认识活动凸显出来。在设计《反比例的意义》时,根据学生的知识水平,对教学内容进行处理,克服教材的局限性,限度地拓宽探究学习的空间,提供自主学习的机会。

教学目标:

1.通过探究活动,理解反比例的意义,并能正确判断成反比例的量。

2.引导学生揭示知识间的联系,培养学生分析判断、推理能力

教学流程:

一、复习铺垫,猜想引入

师:(1)表格里有哪两个相关联的量?(2)这两个相关联的量成正比例关系吗?为什么?

2.猜想

师:今天我们要学习一种新的比例关系——反比例关系。(板书:反比例)

师:从字面上看“反比例”与“正比例”会是怎样的关系?

生:相反的。

师:既然是相反的,你能联系正比例关系猜想一下,在反比例关系中,一个量会怎样随着另一个量的变化而变化?它们的变化会有怎样的规律?

生:(略)

反思:根据学生认知新事物大多由猜而起的规律,从概念的名称“正、反”两宇为切入点,引导学生“顾名思义”,对反比例的意义展开合理的猜想,激起学生研究问题的愿望。

二、提供材料,组织研究

1.探究反比例的意义

师:大家的猜想是否合理,还需要进一步证明。下面我提供给大家几张表格,以小组为单位研究以下几个问题。

(1)表中有哪两个相关联的量?

(2)两个相关联的量,一个量是怎样随着另一个量的变化而变化的?变化规律是什么?

2.小组讨论、交流。(教师巡回查看,并做适当指导。)

3.汇报研究结果

(在汇报交流时,学生们纷纷发表自己的看法。当分析到表3时,大家开始争论起来。)

生1:剩下的路程随着已行路程的扩大而缩小,但积不一定。

生2:已行路程十剩下路程=总路程(一定)。

生3:我认为第一个同学的说法不准确,应该换成“增加”和“减小”……

(最后通过对比大家达成共识:只有表2和表3的变化规律有共性。)

师:表2和表3中两个量的变化规律有哪些共性?(生答略。)

师:这两个相关联的量叫做成反比例的量,它们的关系叫做反比例关系。(完成板书。)

师:如果用字母A和B表示两个相关联的量,用C表示它们的积,你认为反比例关系可以用哪个关系式表示?[板书]

反思:教材中两个例题是典型的反比例关系,但问题过“瘦”过“小”,思路过于狭窄,虽然学生易懂,但容易造成“知其然,而不知其所以然”。通过增加表3,更利于学生发现长×宽=长方形的面积(一定)这一关系式,有助于学生探究规律。同时还增加了表1、表4,把正比例关系、反比例关系、与反比例雷同(“和”一定)的情况混合在一起,给学生提供了甄别问题的机会。

4.做一做(略)

5.学习例6

师:刚才我们是参照表格中的具体数据来研究两个量是不是成反比例关系,如果这两个量直接用语言文字来描述,你还会判断它们成不成反比例关系吗?(投影出示例题。)

三、巩固练习,拓展应用

1.基本练习。(略)

2.拓展应用。

师:你能举一个反比例的例子吗?(先自己举例,写在本子上,再集体交流。)

交流时,学生们争先恐后,列举了许多反比例的例子。课正在顺利进行时,一个同学举的“正方形的边长×边长=面积(一定),边长和边长成反比例”的例子引起了学生们的争论。,教师没有马上做判断,而是问学生:“能说出你的理由吗?”有的学生说:“因为乘积一定,所以边长和边长成反比例关系。”对他的意见有的同学点头称是,而有的同学却摇头……忽然,一名同学像发现新大陆一样大声叫起来:“不对!边长不随着边长的扩大而缩小!这是一种量!”一句话使大家恍然大悟:对啊!边长是一种量,它们不是相关联的两个量,所以边长和边长不成反比例。后来又有一名同学举例:“边长×4=正方形的周长(一定),边长和4成反比例。”话音刚落,学生们就齐喊起来:“不对!边长和4不是相关联的两个量。”

反思:通过“你能举一个反比例的例子吗?”这样一个开放性练习题,让学生联系已有的知识,使新旧知识有机结合,帮助学生建立起良好的认知结构,这同时也是对数量关系一次很好的整理复习机会,通过举例进一步明确如何判断两个量是否成反比例。

3.综合练习

四、总结

最新六年级下数学教案例文4

教学内容:

第87页例1、例2,88页课堂活动第1、2题,练习二十二第1~4题。

教学目标:

1.在现实情境中初步认识负数和理解负数的意义,了解负数的产生与作用,感受负数使用带来的方便。

2.会正确地读、写正、负数,知道0既不是正数,也不是负数。

3.使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的意识。

教学重点:

负数的意义和负数的读法与写法。

教学难点:

理解0既不是正数,也不是负数。

教具准备:

多媒体课件

教学方法:

教师讲授、合作交流

教学过程:

一、复习导入

提出问题:举例说明我们学过了哪些数?

教师小结:为了实际生活的需要,在数物体个数时,1、2、3……出现了自然数,物体一个也没有时用自然数0表示,当测量或计算有时不能得出整数,我们用分数或小数表示。

提出问题:我们学过的数中最小的数是谁?有没有比零还小的数呢?

二、创设情境、学习新知

1.教学例1。

(1)出示:中央电视台天气预报的一个场面,主持人说:“哈尔滨零下6至3摄氏度,重庆6至8摄氏度……”

同学们,你们对情境中的内容一定相当熟悉吧?你能给大家讲讲“哈尔滨零下6至3度”这句话是什么意思吗?

为什么阿姨说的零下6摄氏度,屏幕上打出的字幕就变成了-6℃呢?

这里有零下6℃、零上6℃,都记作6℃行吗?

你有什么简洁的方法来表示他们的不同呢?

教师小结:同学们的想法都很好。现在,国际数学界都是采用符号来区分,我们把比0摄氏度低的温度用带有“-”号的数来表示,例如把零下6℃记作-6℃,读作负6摄氏度;零上6℃记作+6℃,读作正6摄氏度或6摄氏度。

(2)巩固练习。

同学们,你能用刚才我们学过的知识,用恰当的数来表示温度吗?试试看。

学生独立完成第87页下图的练习。

教师巡视,个别辅导,集体订正写得是否正确,并让学生齐读。

2.自主学习例2。(进一步认识正数和负数)

教师:同学们,你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。

今天,老师还带来一张珠穆朗玛峰的海拔图,请看。(珠穆朗玛峰的海拔图,教科书第87页的左部分,数字前没有符号)从图上你看懂了些什么?

引导学生交流:珠穆朗玛峰比海平面高8844.43米。

我们再来看x疆的吐鲁番盆地的海拔图。(吐鲁番盆地的海拔情况,教科书第87页的右部分,数字前没有符号)你又能从图上看懂些什么呢?

引导学生交流:吐鲁番盆地比海平面低155米。

教师小结:珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔高度吗?

学生交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。吐鲁番盆地的海拔可以记作:-155米。(板书)

教师追问:你是怎么想到用这种方法来记录的呢?

最后教师将数字改动成:海拔+8844.43米或8844.43米;海拔-155米。

教师小结:以海平面为界线,+8844.43米或8844.43米这样的数表示比海平面高8844.43米;-155米这样的数表示比海平低155米。

(2)巩固练习:教科书第88页试一试。

3.小组讨论,归纳正数和负数。

教师:通过刚才的学习,我们收集到了一些数据,(显示)我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。那么,你们观察一下这些数,它们一样吗?它们可以怎样分类呢?

提出疑问:0到底归于哪一类?(如有学生提出更好)引导学生争论,各自发表意见。

小结:(结合图)我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0就像一条分界线,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把像+6、3、+8844.43等这样的数叫做正数;像-6、-155等这样的数我们叫做负数;而0既不是正数,也不是负数。(板书)

通常正号可以省略不写。负号可以省略不写吗?为什么?

最后,让学生看书勾划,并思考两个“……”还代表那些数?(让学生对正负数的理解更全面和深刻)

三、运用新知,课堂作业

1.课堂活动第1题。让学生先自己读读,并举例说说是什么意思?全班订正后,同桌间自选5个互相说说。

2.课堂活动第2题。同桌先讨论,然后反馈。

四、小结

同学们,今天我们认识了负数。你有什么收获?

五、课堂作业

练习二十二第1、4题。

家庭作业:练习二十二第2、3题。

板书设计:

负数的初步认识

正数:20、22、14、 +8844.43…

0:既不是正数也不是负数

负数:-2、-30、-10、-15、-155…

最新六年级下数学教案例文5

教学目标:

1.知识与技能目标

能够正确运用圆锥体积计算公式解决实际有关圆锥体积的实际应用问题。

2.过程与方法

在探作中完成圆锥体积公式的推导。在合作探究中探明等底等高圆柱体积与圆锥体积内在联系。

3.情感态度与价值感

在探索合作中感受教学与我生活的密切联系,让学生感受探究成功的快乐。

教学重点:

掌握圆锥体积的计算公式,并能灵活利用公式求圆锥的体积。

教学难点:

理解圆锥体积公式的推导过程及解决生活中的实际问题

学习者特征分析:

接受教育者是小学六年级的学生。

教学策略选择与设计:

(1)引导学生主动建构知识是新课标的重要理念,六年级的学生尽管具备了一定的逻辑思维能力,但感性知识对于他们来说还是非常重要的。因此,教学中通过引导学生通过自主探索、解决问题,真正掌握所学知识,发展数学能力,真正做到“动手操作、体验成功”

(2)以实验要求为主线,既动手操作,又动脑思考,努力探索圆锥体的计算方法。

(3)问题解决为主的教学策略:通过演示、小组交流、动手操作、感念辨析等方式,本课从具体的学生感兴趣的活动中,让学生自己发现问题,提出问题,体验探索成功的快乐;提高学生解决问题的能力,巩固所学知识。

教学资源与工具设计:

(1)每位同学准备等底等高的圆柱体和圆锥体6套,大小不同的圆柱体和圆锥体6套、6水槽红颜色水。直尺6把。

(2)教师自制的多媒体课件;

教学过程:

一、复习旧知,课前铺垫

1.怎样计算圆柱的体积?

指名回答,教师板书:圆柱体的体积=底面积×高。

2.一个圆柱的底面积是60平方分米,高15分米,它的体积是多少立方分米?

指两名板演,全班齐练,集体订正。

二、提出质疑,引入新课

圆锥有什么特征? 它的体积如何计算呢?

今天我们就利用这些知识探讨新的——怎样计算圆锥的体积(板书课题)

三、动手操作 ,获得新知

1. 探讨圆锥的体积公式

教师:怎样探讨圆锥的体积计算公式呢?在回答这个问题之前,请同学们先想一想,我们是怎样知道圆柱体积公式的:

学生回答,教师板书:

圆柱——(转化)——长方体

圆柱体积公式——(推导)——长方体体积公式

教师:借鉴这种方法,为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体。你们小组比比看,这两个形体有什么相同的地方?学生操作比较。

(1) 提问学生:你发现到什么?(这个圆柱体和这个圆锥体的形状有什么关系)

(学生得出:底面积相等,高也相等。)

底面积相等,高也相等,用数学语言说就叫“等底等高”。

(板书:等底 等高)

(2)为什么?既然这两个形体是等底等高的,那么我们就跟求圆柱体体积一样,就用“底面积×高”来求圆锥体体积行不行?为什么?

教师:圆锥体的体积小,那你估计一下这两个形体的体积大小有什么样的关系?(指名发言)

用水和圆柱体、圆锥体做实验。怎样做这个实验由小组同学自己商量,但最后要向同学们汇报,你们组做实验的圆柱体和圆锥体在体积大小上有什么样的倍数关系。

(3) 学生分组做实验。

谁来汇报一下,你们组是怎样做实验的?

你们做实验的圆柱体和圆锥体在体积大小上发现有什么倍数关系?(学生发言:圆柱体的体积是圆锥体体积的3倍)

同学们得出这个结论非常重要,其他组也是这样的吗?

我们学过用字母表示数,谁来把这个公式整理一下?(指名发言)

(4)学生操作:出示另外一组大小不同的圆柱体和圆锥体进行体积大小的比较,通过比较你发现什么?

学生回答后,教师整理归纳:不是任何一个圆锥体的体积都是任何一个圆柱体体积的。 (老师拿起一个小圆锥、一个大圆柱)如果老师把这个大圆锥体里装满了砂子,往这个小圆柱体里倒,倒三次能倒满吗?(不能)

为什么你们做实验的圆锥体里装满了水往圆柱体里倒,倒三次能倒满呢?(因为是等底等高的圆柱体和圆锥体。)

在等底等高的情况下。

(老师在体积公式与“等底等高”四个字上连线。)

现在我们得到的这个结论就更完整了。(指名反复叙述公式。)

教师:同学们圆锥体里装满了水往圆柱体里倒,只倒一次,看看能不能想办法推出计算公式?让学生动脑动手?

得出用尺子量圆锥里的水倒进圆柱里,水高是原来水高的1/3.

小结:今后我们求圆锥体体积就用这种方法来计算。

(5)应用巩固

1.出示例题学生读题,理解题意,自己解决问题。

例 一个圆锥形的零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?

学生完成后,进行小组交流。

你是怎样想的和怎样解决问题。(提问学生多人)

教师板书:

1/3 ×19×12=76(立方厘米)

答:它的体积是76立方米

2. 练习题。

一个圆锥体,半径为6cm,高为18cm。体积是多少?(学生在黑板上只列式,反馈。)

3.出示例2:要求学生自己读题,理解题意思。

有一个近似于圆锥的小麦堆,测得底面半径是2米,高是1.5米。你能计算出这堆小麦的体积吗?

(1)提问:从题目中你知道什么?

(2)学生独立完成后教师提问。并回答同学的质疑:3.14×()×1.5表示什么?为什么要先求圆锥的体积?得数保留整千克数是什么意思? 4.比较:例1和例2有什么地方不同?

(1)直接告诉了我们底面积,而(2)没有直接告诉,要求我们先求出底面积,再求出圆锥体积。

四、综合练习,发展思维

1.一个圆锥形沙堆,高是1.5米,底面半径是2米,每立方米沙重1.8吨。这堆沙约重多少吨?

2.选择题。

每道题下面有3个答案,你认为哪个答案正确就用手指数表示。

(1)一个圆锥体的体积是a立方米,和它等底等高的圆柱体体积是(    )

立方米 3a立方米 9立方米

(2)把一段圆钢切削成一个的圆锥体,圆柱体体积是6立方米,圆锥体体积是(    )立方米

6立方米 3立方米 2立方米

3.学生操作

看看我们的教室是什么体?(长方体)

要在我们的教室里放一个尽可能大的圆锥体,想一想,怎样放体积?(小组讨论)

指名发言。当争论不出结果时,让学生以小组为单位动手测量数据:教室长12m,宽6m,高4m.并板书出来,再比较怎样放体积的圆锥体。

五、课后小结,归纳知识

这节课你有什么收获?哪个同学、哪个小组学习?

六、作业布置,巩固新知

1、本节课后第3、4、5题。

2、回去观察你生活身边有哪圆锥物体?测量计算它们的体积。下节课交流汇报。