七年级数学下册练习册答案
平行线的判定第1课时
基础知识
1、C
2、ADBCADBC180°-∠1-∠2∠3+∠4
3、ADBEADBCAECD同位角相等,两直线平行
4、题目略
MNAB内错角相等,两直线平行
MNAB同位角相等,两直线平行
两直线平行于同一条直线,两直线平行
5、B
6、∠BED∠DFC∠AFD∠DAF
7、证明:
∵AC⊥AEBD⊥BF
∴∠CAE=∠DBF=90°
∵∠1=35°∠2=35°
∴∠1=∠2
∵∠BAE=∠1+∠CAE=35°+90°=125°∠CBF=∠2+∠DBF=35°+90°=125°
∴∠CBF=∠BAE
∴AE∥BF(同位角相等,两直线平行)
8、题目略
(1)DEBC
(2)∠F同位角相等,两直线平行
(3)∠BCFDEBC同位角相等,两直线平行
能力提升
9、∠1=∠5或∠2=∠6或∠3=∠7或∠4=∠8
10、有,AB∥CD
∵OH⊥AB
∴∠BOH=90°
∵∠2=37°
∴∠BOE=90°-37°=53°
∵∠1=53°
∴∠BOE=∠1
∴AB∥CD(同位角相等,两直线平行)
11、已知互补等量代换同位角相等,两直线平行
12、平行,证明如下:
∵CD⊥DA,AB⊥DA
∴∠CDA=∠2+∠3=∠BAD=∠1+∠4=90°(互余)
∵∠1=∠2(已知)
∴∠3=∠4
∴DF∥AE(内错角相等,两直线平行)
探索研究
13、对,证明如下:
∵∠1+∠2+∠3=180°∠2=80°
∴∠1+∠3=100°
∵∠1=∠3
∴∠1=∠3=50°
∵∠D=50°
∴∠1=∠D=50°
∴AB∥CD(内错角相等,两直线平行)
14、证明:
∵∠1+∠2+∠GEF=180°(三角形内角和为180°)且∠1=50°,∠2=65°
∴∠GEF=180°-65°-50°=65°
∵∠GEF=∠BEG=1/2∠BEF=65°
∴∠BEG=∠2=65°
∴AB∥CD(内错角相等,两直线平行)
九年级上册数学同步练习册参考答案
第22章二次根式
§22.1 二次根式(一)
一、1. D 2. C 3. D 4. C
二、1. x2?1 2. x<-7 3. x≤3 4. 1 5. x≥2y
1 2. x>-1 3. x=0 2
§22.1 二次根式(二) 三、1. x≥
一、1. B 2. B 3. D 4. B
22二、1.(1)3 (2)8 (3)4x2 2. x-2 3. 42或(-4)2 或 (?)7)
4. 1 5. 3a
三、1. (1) 1.5 (2) 3(3) 25 (4) 20 2. 原式=(x-1)+(3-x)=2 7
3. 原式=-a-b+b-a=-2 a
§22.2 二次根式的乘除法(一)
一、1. D 2. B
二、1. ,a 2. 3. n2?1?n?12n?1(n≥3,且n为正整数)
212三、1. (1) (2) (3) -108 2. cm 32
§22.2 二次根式的乘除法(二)
一、1. A 2. C 3. B 4. D
二、1. 3 2b 2. 2a 2 3. 5
三、1. (1) 52 (2) 62 (3) 22 (4) 4a2b 2. cm §22.2 二次根式的乘除法(三)
一、1. D 2. A 3. A 4. C
, 2. x=2 3. 6 32
22三、1.(1) (3) 10 (4) 2 2 (2) 3-32二、1.
2. 82nn?8?2,因此是2倍. 55
3. (1) 不正确,?4?(?9)??9?4?;
(2) 不正确,4121247. ?4???2525255
§22.3 二次根式的加减法
一、1. A 2. C 3. D 4. B
二、1. 2 ?35(答案不) 2. 1 3.
4. 5?2 5. 3
三、1.(1)43 (2) (3) 1 (4)3-52 (5)52-2 (6)3a-2 3
2. 因为42??)?42?32?42)?4?82?2?45.25>45
所以王师傅的钢材不够用.
3. (?2)2?23?2
苏教版五年级下册数学练习与测试答案
第2页
1.下面的式子哪些是等式?哪些是方程?
等式有:
x-12=5 40×2=80 2x+3y=18 60-5x=15
方程有:
x-12=5 2x+3y=18 60-5x=15
2.用方程表示下面的数量关系式。
(1)5x=2.5
(2)36+x=60
(3)x-25=30
(4)x+2=38.5
3.有5元和10元面值的人民币各x张,共有300元。你能列方程式表示这里的数量关系吗?
(5+10)×X=300
第3页
1.选择参考答案:的序号填在括号里。
⑴B⑵A
⑶A⑷B
2.解方程。
x+43=101 x-17=45 8.5+x=10.2
x=101-43 x=45+17 x=10.2-8.5
x=58 x=62 x=1.7
3.根据数量关系列方程并解答。
(1)一根蓝彩带比一根红彩带长2.7米,红彩带长x米,蓝彩带长6.9米。
题根据数量关系“红彩带的长+2.7=蓝彩带的长”,
可列方程
x+2.7=6.9,
x+2.7-2.7=6.9-2.7
x=4.2
(2)一根蓝彩带比一根红彩带长x米,红彩带长4.2米,蓝彩带长6.9米。
题根据数量关系“红彩带的长+x=蓝彩带的长”,
可列方程
x+4.2=6.9
x=6.9-4.2
x=2.7