高考数学提分复习题训练归纳

马振华

高考数学复习题

1. 下列八个关系式①{0}= ② =0 ③ { } ④ { } ⑤{0}

⑥0 ⑦ {0} ⑧ { }其中正确的个数

(A)4 (B)5 (C)6 (D)7

2.集合{1,2,3}的真子集共有

(A)5个 (B)6个 (C)7个 (D)8个

3.集合A={x } B={ } C={ }又 则有

(A)(a+b) A (B) (a+b) B (C)(a+b) C (D) (a+b) A、B、C任一个

4.设A、B是全集U的两个子集,且A B,则下列式子成立的是

(A)CUA CUB (B)CUA CUB=U

(C)A CUB= (D)CUA B=

5.已知集合A={ }, B={ }则A =

(A)R (B){ }

(C){ } (D){ }

6.下列语句:(1)0与{0}表示同一个集合; (2)由1,2,3组成的集合可表示为

{1,2,3}或{3,2,1}; (3)方程(x-1)2(x-2)2=0的所有解的集合可表示为 {1,1,2}; (4)集合{ }是有限集,正确的是

(A)只有(1)和(4) (B)只有(2)和(3)

(C)只有(2) (D)以上语句都不对

7.设S、T是两个非空集合,且S T,T S,令X=S 那么S∪X=

(A)X (B)T (C) (D)S

8设一元二次方程ax2+bx+c=0(a<0)的根的判别式 ,则不等式ax2+bx+c 0的解集为

(A)R (B) (C){ } (D){ }

填空题

9.在直角坐标系中,坐标轴上的点的集合可表示为

10.若A={1,4,x},B={1,x2}且A B=B,则x=

11.若A={x } B={x },全集U=R,则A =

12.若方程8x2+(k+1)x+k-7=0有两个负根,则k的取值范围是

13设集合A={ },B={x },且A B,则实数k的取值范围是。

14.设全集U={x 为小于20的非负奇数},若A (CUB)={3,7,15},(CUA) B={13,17,19},又(CUA) (CUB)= ,则A B=

解答题

15(8分)已知集合A={a2,a+1,-3},B={a-3,2a-1,a2+1}, 若A B={-3},求实数a。

16(12分)设A= , B= ,

其中x R,如果A B=B,求实数a的取值范围

四.习题答案

选择题

1 2 3 4 5 6 7 8

C C B C B C D D

填空题

9.{(x,y) } 10.0, 11.{x ,或x 3} 12.{ } 13.{ } 14.{1,5,9,11}

解答题

15.a=-1

16.提示:A={0,-4},又A B=B,所以B A

(Ⅰ)B= 时, 4(a+1)2-4(a2-1)<0,得a<-1

(Ⅱ)B={0}或B={-4}时, 0 得a=-1

(Ⅲ)B={0,-4}, 解得a=1

综上所述实数a=1 或a -1

高考数学提分专项练习试题

1.已知=,则tan α+=(  )

A.-8 B.8

C.1 D.-1

答案:A 解题思路:

=

=cos α-sin α=,

1-2sin αcos α=,即sin αcos α=-.

则tan α+=+===-8.故选A.

2.在ABC中,若tan Atan B=tan A+tan B+1,则cos C的值为(  )

A.-1/2 B.1/3

C. 1/2D.-1

答案:B 解题思路:由tan Atan B=tan A+tan B+1,可得=-1,即tan(A+B)=-1,又因为A+B(0,π),所以A+B=,则C=,cos C=.

3.已知曲线y=2sincos与直线y=相交,若在y轴右侧的交点自左向右依次记为P1,P2,P3,…,则||等于(  )

A.π B.2π

C.3π D.4π

答案:B 命题立意:本题考查三角恒等变换及向量的坐标运算,难度较小.

解题思路:由于f(x)=2sin2=2×=1+sin 2x,据题意,令1+sin 2x=,解得2x=2kπ-或2x=2kπ-(kZ),即x=kπ-或x=kπ-(kZ),故P1,P5,因此||==2π.

4.在ABC中,角A,B,C所对的边分别为a,b,c,S表示ABC的面积,若acos B+bcos A=csin C,S=(b2+c2-a2),则B等于(  )

A.90° B.60°

C.45° D.30°

答案:C 解题思路:由正弦定理和已知条件知sin Acos B+sin Bcos A=sin2C,即sin(A+B)=sin2C, sin C=1,C=,从而S=ab=(b2+c2-a2)=(b2+b2),解得a=b,因此B=45°.

5.已知=k,0<θ<,则sin的值(  )

A.随着k的增大而增大

B.有时随着k的增大而增大,有时随着k的增大而减小

C.随着k的增大而减小

D.是一个与k无关的常数

答案:A 解题思路:k==

=2sin θcos θ=sin 2θ,因为0<θ<,所以sin=-=-=-为增函数,所以sin的值随着k的增大而增大.

6.在ABC中,角A,B,C的对边分别为a,b,c,已知4sin2-cos 2C=,且a+b=5,c=,则ABC的面积为(  )

A.3 B.3

C.-1/2 D.1/2

答案:A 命题立意:本题主要考查余弦定理及三角形面积的.求解,意在考查考生对余弦定理的理解和应用能力.

解题思路: 4sin2-cos 2C=,

2[1-cos(A+B)]-2cos2C+1=,

2+2cos C-2cos2C+1=,

cos2C-cos C+=0,解得cos C=,

故sin C=.根据余弦定理有

cos C==,ab=a2+b2-7,

3ab=a2+b2+2ab-7=(a+b)2-7=25-7=18,ab=6,

S=absin C=×6×=.

高考数学专项练习试题

一、选择题

1.若点P是两条异面直线l,m外的任意一点,则(  )

A.过点P有且仅有一条直线与l,m都平行

B.过点P有且仅有一条直线与l,m都垂直

C.过点P有且仅有一条直线与l,m都相交

D.过点P有且仅有一条直线与l,m都异面

答案:B 命题立意:本题考查异面直线的几何性质,难度较小.

解题思路:因为点P是两条异面直线l,m外的任意一点,则过点P有且仅有一条直线与l,m都垂直,故选B.

2.如图,P是正方形ABCD外一点,且PA平面ABCD,则平面PAB与平面PBC、平面PAD的位置关系是(  )

A.平面PAB与平面PBC、平面PAD都垂直

B.它们两两垂直

C.平面PAB与平面PBC垂直,与平面PAD不垂直

D.平面PAB与平面PBC、平面PAD都不垂直

答案:A 解题思路: DA⊥AB,DAPA,AB∩PA=A,

DA⊥平面PAB,又DA平面PAD, 平面PAD平面PAB.同理可证平面PAB平面PBC.把四棱锥P-ABCD放在长方体中,并把平面PBC补全为平面PBCD1,把平面PAD补全为平面PADD1,易知CD1D即为两个平面所成二面角的平面角,CD1D=APB,

CD1D<90°,故平面PAD与平面PBC不垂直.

3.设α,β分别为两个不同的平面,直线lα,则“lβ”是“αβ”成立的(  )

A.充分不必要条件

B.必要不充分条件

C.充要条件

D.既不充分也不必要条件

答案:A 命题立意:本题主要考查空间线面、面面位置关系的判定与充分必要条件的判断,意在考查考生的逻辑推理能力.

解题思路:依题意,由lβ,lα可以推出αβ;反过来,由αβ,lα不能推出lβ.因此“lβ”是“αβ”成立的充分不必要条件,故选A.

4.若m,n为两条不重合的直线,α,β为两个不重合的平面,则下列结论正确的是(  )

A.若m,n都平行于平面α,则m,n一定不是相交直线

B.若m,n都垂直于平面α,则m,n一定是平行直线

C.已知α,β互相垂直,m,n互相垂直,若mα,则nβ

D.m,n在平面α内的射影互相垂直,则m,n互相垂直

答案:B 解题思路:本题考查了空间中线面的平行及垂直关系.在A中:因为平行于同一平面的两直线可以平行,相交,异面,故A为假命题;在B中:因为垂直于同一平面的两直线平行,故B为真命题;在C中:n可以平行于β,也可以在β内,也可以与β相交,故C为假命题;在D中:m,n也可以不互相垂直,故D为假命题.故选B.

5.如图所示,已知正方体ABCD-A1B1C1D1的棱长为2,长为2的线段MN的一个端点M在棱DD1上运动,另一端点N在正方形ABCD内运动,则MN的中点的轨迹的面积为(  )

A.4π B.2π

C.π D.-π

答案:D 解题思路:本题考查了立体几何中的点、线、面之间的关系.如图可知,端点N在正方形ABCD内运动,连接ND,由ND,DM,MN构成一个直角三角形,设P为NM的中点,根据直角三角形斜边上的中线长度为斜边的一半可得,不论MDN如何变化,点P到点D的距离始终等于1.故点P的轨迹是一个以D为中心,半径为1的球的球面,其面积为.

技巧点拨:探求以空间图形为背景的轨迹问题,要善于把立体几何问题转化到平面上,再联合运用平面几何、立体几何、空间向量、解析几何等知识去求解,实现立体几何到解析几何的过渡.

6.如图是一几何体的平面展开图,其中四边形ABCD为正方形,E,F分别为PA,PD的中点,在此几何体中,给出下面四个结论:

直线BE与直线CF是异面直线;直线BE与直线AF是异面直线;直线EF平面PBC;平面BCE平面PAD.

其中正确结论的序号是(  )

A.1 B.1

C. 3D.4

答案:B 解题思路:本题考查了立体几何中的点、线、面之间的关系.画出几何体的图形,如图,由题意可知,直线BE与直线CF是异面直线,不正确,因为E,F分别是PA与PD的中点,可知EFAD,所以EFBC,直线BE与直线CF是共面直线;直线BE与直线AF是异面直线,满足异面直线的定义,正确;直线EF平面PBC,由E,F是PA与PD的中点,可知EFAD,所以EFBC,因为EF平面PBC,BC平面PBC,所以判断是正确的;由题中条件不能判定平面BCE平面PAD,故不正确.故选B.

技巧点拨:翻折问题常见的是把三角形、四边形等平面图形翻折起来,然后考查立体几何的常见问题:垂直、角度、距离、应用等问题.此类问题考查学生从二维到三维的升维能力,考查学生空间想象能力.解决该问题时,不仅要知道空间立体几何的有关概念,还要注意到在翻折的过程中哪些量是不变的,哪些量是变化的.

二、填空题

7.如图,四边形ABCD为菱形,四边形CEFB为正方形,平面ABCD平面CEFB,CE=1,AED=30°,则异面直线BC与AE所成角的大小为________.

答案:45° 解题思路:因为BCAD,所以EAD就是异面直线BC与AE所成的角.

因为平面ABCD平面CEFB,且ECCB,

所以EC平面ABCD.

在RtECD中,EC=1,CD=1,故ED==.

在AED中,AED=30°,AD=1,由正弦定理可得=,即sin EAD===.

又因为EAD∈(0°,90°),所以EAD=45°.

故异面直线BC与AE所成的角为45°.

8.给出命题:

异面直线是指空间中既不平行又不相交的直线;

两异面直线a,b,如果a平行于平面α,那么b不平行于平面α;

两异面直线a,b,如果a平面α,那么b不垂直于平面α;

两异面直线在同一平面内的射影不可能是两条平行直线.

上述命题中,真命题的序号是________.

答案: 解题思路:本题考查了空间几何体中的点、线、面之间的关系.根据异面直线的定义知:异面直线是指空间中既不平行又不相交的直线,故命题为真命题;两条异面直线可以平行于同一个平面,故命题为假命题;若bα,则ab,即a,b共面,这与a,b为异面直线矛盾,故命题为真命题;两条异面直线在同一个平面内的射影可以是:两条平行直线、两条相交直线、一点一直线,故命题为假命题.