高三年级数学学习方法
传授科学的思想方法
高中数学的学习不能满足于盲目地在题海中奋战,更加不能就题来论题。特别是高中阶段的数学学习,要特别注重掌握数学的思想方法。数学思想方法如果按层次分,可分为数学一般方法、逻辑学数学方法与数学思想方法。其中,数学一般方法主要是数学解题的具体方法及相关技能、技巧,比如高中数学里的配方法、换元法、待定系数法和判别式法等。逻辑学数学方法主要是指数学的思维方法,主要有分析法、综合法、归纳法和试验法等。数学思想方法主要有函数与方程思想、化归思想及数形结合思想等。
通过对数学解题过程中最富有特色的典型智力活动进行分析和归纳,可以提炼出分析、解决数学问题的规律来,也就是要先弄清问题,再拟定解题计划,接着实现解题计划,最后进行回顾这四个阶段。在数学教学中,教师要把好审题关、计算关及数学表达关,要求学生对概念、公式和定理等知识点进行准确记忆,并能牢固掌握,还要学会运用这些知识开展计算、证明和逻辑推理。只要把握高中数学学习的规律,掌握了学习的方法,无论遇到任何题目,都能迎刃而解。
抓要点提高学习效率。
(1)抓教材处理。正所谓“万变不离其中”。要知道,教材始终是我们学习的根本依据。教学是活的,思维也是活的,学习能力是随着知识的积累而同时形成的。我们要通过老师教学,理解所学内容在教材中的地位,并将前后知识联系起来,把握教材,才能掌握学习的主动性。
(2)抓问题暴露。对于那些典型的问题,必须及时解决,而不能把问题遗留下来,而要对遗留的问题及时、有针对地起来,注重实效。
(3)抓解题指导。要合理选择简捷的运算途径,要根据问题的条件和要求合理地选择运算过程,抓住问题的关键突破口,提高自己的学习能力。
(4)抓思维训练。数学的特点是具有高度的抽象性、逻辑性和广泛的适用性,对能力要求较高。我们在平时的训练中,要注重一个思维的过程,学习能力是在不断运用中才能培养出来的。
(5)抓40分钟课堂效率。我们学习的大部分时间都在学校,如果不能很好地抓住课堂时间,而寄望于课下去补,则会使学习效率大打折扣了。
高三数学学习方法推荐
一、加强集体备课,优化课堂教学,
即优化课堂教学目标,规范教学程序,提高课堂效率,全面发展、培养学生的能力,为其自身的进一步发展打下良好的基矗在集体备课中,注重充分发挥各位教师的长处,集体备课前,每位教师都准备一周的课,集体备课时,每位教师都进行说课,然后对每位教师的教学目标的制定,重点、难点的突破方法及课后作业的布置等逐一评价。
二、研读考纲,梳理知识
(1)细心推敲对考试内容三个不同层次的要求。准确掌握哪些内容是了解,哪些是理解和掌握,哪些是灵活和综合运用。这样既明了知识系统的全貌,又知晓了知识体系的主干及重点内容,
(2)仔细剖析对能力的要求和考查的数学思想与教学方法有哪些?
三、重视课本,狠抓基础,构建学生的良好知识结构和认知结构。
以课本为主,重新全面梳理知识、方法,注意知识结构的重组与概括,揭示其内在的联系与规律,从中提炼出思想方法。在知识的深化过程中,切忌孤立对待知识、方法,而是自觉地将其前后联系,纵横比较、综合,自觉地将新知识及时纳入已有的`知识系统中去,融会代数、三角、立几、解析几何于一体,进而形成一个条理化、有序化、网络化的高效的有机认知结构。
四、狠抓常规,强化落实与检查
精心选题,针对性讲评。
五、注重“三点”,培养学习习惯。
高三复习注意到低起点、重探究、求能力的同时,还注重抓住分析问题、解决问题中的信息点、易错点、得分点,培养良好的审题、解题习惯,养成规范作答、不容失分的习惯。
高三数学基础知识学习方法
学数学离不开做题,高三学习更要做题,不做一定量习题是不可能学好数学的,但是要注意以下几个问题:
1.难度适当.现在复习资料多,题多,复习时应按老师的要求.且不能一味做难题、综合题,好高骛远,不但会耗费大量时间,而且遇到不会做题多了就会降低你的自信心,养成容易忽略一些看似简单的基础问题和细节问题,在考试时丢了不丢的分,造成难以弥补的损失.因此,练习时应从自已的实际情况出发,循序渐进.应以基础题、中档题为主,适当做一些综合性较强的题以提高能力和思维品质
2.题贵在精.在可能的情况下多练习一些是好的,但贵在精.首先选题应结合《考试说明》的要求和近几年高考题的考查的方向去选,重点体现“三基”,体现“通性、通法”.其次做题时的思考和总结非常重要,每做一道题都要回想一下自己的解题思路,看看能不能一题多解,举一反三,并注意合理运算,优化解题过程.第三对重点问题要舍得划费时间,多做一些题.第四在复习过程中也要不断做一些应用题,来提高阅读理解能力和解决实际问题的能力,这是高考改革的方向之一.
3.重视改错.有的同学只重视解题的数量而轻视质量,表现在做题后不问对错,尤其老师已经批阅过的也视而不见,这怎么能进步呢?错了不仅要改,还要记下来,分析造成错误的原因和启示,尤其是考试试卷更要注意.只有经过不断的改正错误,日积月累,才能提高.
4.注意总结.不仅包括题型、方法、规律的总结,还要掌握一些基本题.如立体几何中有这样一道:AC和平面所成的角是,AC平面内AC和AB的射影AB成角,设∠BAC=,求证:coscos=cos.这个等式为立体几何中某此题的计算带来了方便.
如对函数f(x)=x+的奇偶性、单调性、极值和图象应熟悉,利用它给求某些解析式的最值带来了方便.