高考数学一轮复习函数知识点
一次函数
一、定义与定义式:
自变量x和因变量y有如下关系:
y=kx+b
则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx (k为常数,k≠0)
二、一次函数的性质:
1.y的变化值与对应的x的变化值成正比例,比值为k
即:y=kx+b (k为任意不为零的实数 b取任何实数)
2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:
1.作法与图形:通过如下3个步骤
(1)列表;
(2)描点;
(3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)
2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:
当k>0时,直线必通过一、三象限,y随x的增大而增大;
当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;
当b=0时,直线通过原点
当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
四、确定一次函数的表达式:
已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b …… ① 和y2=kx2+b …… ②
(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
高考数学知识点整理
(1)不等关系
感受在现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景。
(2)一元二次不等式
①经历从实际情境中抽象出一元二次不等式模型的过程。
②通过函数图象了解一元二次不等式与相应函数、方程的联系。
③会解一元二次不等式,对给定的一元二次不等式,尝试设计求解的程序框图。
(3)二元一次不等式组与简单线性规划问题
①从实际情境中抽象出二元一次不等式组。
②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组(参见例2)。
③从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决(参见例3)。
(4)基本不等式:
①探索并了解基本不等式的证明过程。
②会用基本不等式解决简单的(小)值问题。
高三高考数学知识点整理
轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性)。
一、求动点的轨迹方程的基本步骤。
1.建立适当的坐标系,设出动点M的坐标;
2.写出点M的集合;
3.列出方程=0;
4.化简方程为最简形式;
5.检验。
二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
1.直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
2.定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
3.相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
4.参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
5.交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
求动点轨迹方程的一般步骤:
①建系——建立适当的坐标系;
②设点——设轨迹上的任一点P(x,y);
③列式——列出动点p所满足的关系式;
④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;
⑤证明——证明所求方程即为符合条件的动点轨迹方程。